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Figure 1: Our simulation algorithm is capable of generating different group behavior using a small set of intuitive parameters.

Abstract
Crowd simulators are commonly used to populate movie or game scenes in the entertainment industry. Even though it is crucial
to consider the presence of groups for the believability of a virtual crowd, most crowd simulations only take into account
individual characters or a limited set of group behaviors. We introduce a unified solution that allows for simulations of crowds
that have diverse group properties such as social groups, marches, tourists and guides, etc. We extend the Velocity Obstacle
approach for agent based crowd simulations by introducing Velocity Connection; the set of velocities that keep agents moving
together whilst avoiding collisions and achieving goals. We demonstrate our approach to be robust, controllable, and able to
cover a large set of group behaviors.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation; I.6.8 [Simulation and Modeling]: Types of Simulation—Animation

1. Introduction

Real crowds are not only made of isolated individuals but also
structured by the presence of groups, such as families, bands of
friends, larger groups of schoolmates or tourists during a field-trip.
Groups result into visually strong patterns: aggregations, specific
spatial distributions, cohesive motions, etc. In many places, crowds
are mainly composed of groups compared to individual walkers
(e.g., 70% in the example of a shopping street according to Mous-
saïd et al. [MPG∗10]). When aiming to improve crowd simulator
quality, it is crucial to consider groups, especially in the context
of entertainment applications which are in demand for high visual
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quality. The general objective of our work is to simulate crowds
that may contain groups.

While several techniques that simulate groups in crowds are re-
ported in the literature, the problem has only received partial an-
swers: solutions are limited to specific situations, group types or
behaviors. We first address the problem of providing a general def-
inition of groups in crowds which may exist under many forms.
Groups are of different sizes: a family of four, ten friends, fifty
tourists, one thousand in a march, etc. Groups are structured by
different internal relations: followers with a leader, tourists made
of families with a guide, schoolmates with a set of teachers, etc.
Groups are guided by different goals and constraints: armies have
specific formations, parents keep contact with their kids, friends
chat together, etc. It is still a challenge to model groups in all these
dimensions. Previous solutions do not generalize to a large vari-
ety of groups. We also address the problem of implementing groups
in a crowd simulator. Previous approaches added an upper simula-
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tion behavioral layer to play on agents’ goals and force grouping.
This a limited solution, we believe that the notion of groups should
be expressed at the core of microscopic simulation algorithms, as
a new mode of local interactions between agents. This requires to
mathematically define those local interactions and to deal with the
problem of combining several, often conflicting, local interactions
(e.g., avoiding collisions while staying close to other agents).

In this paper, we propose a unified and opened definition of
groups in crowds: a group is a subset of agents which desire to
move together. This means that agents of the same group should
move so that they maintain a bounded distance. Setting both up-
per and lower bounds allows agents to simultaneously group and
avoid collisions respectively. We implement this definition based
on the velocity-obstacle formalism. One agent in a group constantly
moves with velocities that enable: a) not colliding with other neigh-
bor agents, and b) staying at a bounded distance to some other
agents belonging in the same group. On the technical point of view,
we extend the RVO algorithm by adding an upper bound on the
future distance of closest approach to make agents group together.
Obviously, in most cases, an agent cannot stay at a bounded dis-
tance from all the other members of its group especially when that
group is large. Therefore, one important component of our solu-
tion is the way each agent selects a subset of neighbors to stay
close to (the connection-agents). Playing on the few parameters of
our algorithm (the number of connection agents, their selection, the
bound distance value with connection agents, etc.) we demonstrate
the remarkable ability of our algorithm to generate a large variety
of emerging group behaviors as well as to deal with complex sim-
ulation scenarios.

Our contribution is multi-faceted:

1. We introduce a new model of local interaction for grouping,
based on a velocity-based formulation.

2. We propose a unified group simulation algorithm which is capa-
ble of covering a large set of existing situations. By only playing
on few parameters’ value, we are able to configure our algorithm
to consider small and large groups, uniform or leader/followers
groups, cohesive groups or sparse ones, etc.

3. Our method enables emergent group behaviors based on the lo-
cal expression of grouping interactions. We demonstrate the va-
riety of emergent behaviors at the same time we map them with
the simulation parameters values.

The remaining of the paper is organized as follows. In Section 2,
we overview existing solutions to simulate groups and outline the
lack of a general solution to simulate them. Section 3 is dedicated to
the technical description of our approach. In Section 4 we demon-
strate our approach in two different ways. We first demonstrate the
variety of group behaviors emerging from different parameter sets.
Secondly, we demonstrate our method over typical situations of real
usage. We discuss our results and the limitations of our approach
before concluding and opening perspectives for future research.

2. Related Work

This section overviews the literature on crowd simulation and fo-
cuses on group modeling; we do not report the sociological aspects
of the topic.

Microscopic crowd simulation Modeling local interactions is
an essential task in the design of microscopic crowd simula-
tors. Many approaches addressed the problem of collision avoid-
ance [Rey99, HM95, POO∗09, GCC∗10, OPOD10], respectively
based on steering rules, social forces, experimental analysis, veloc-
ity space optimization and vision perception. Our method is built
on the velocity obstacle (VO) concept [FS98]. Van den Berg et
al. [VdBLM08] proposed the Reciprocal Velocity Obstacle (RVO)
to handle oscillations present in the initial VO method, and later
derived a linear programming solution [VDBGLM11]. Guy et
al. [GKLM11] mapped RVO parameters with personality descrip-
tors. Kim et al. [KGL∗13] learned simulation parameters from
video. These only consider the collision avoidance between in-
dividuals, other techniques enable individuals to avoid a group.
Schuerman et al. [SSKF10] represented the whole group as a new
type of agent. Lemercier and Auberlet [LA15] introduced behav-
ioral laws to simulate group avoidance. Bruneau et al. [BOP15]
used Virtual Reality to study how real humans behave when avoid-
ing groups.

Group simulation The seminal work by Reynolds [Rey87]
demonstrated impressive flocking simulation. Musse and Thal-
mann [MT97] considered the relationship between groups of in-
dividuals and the emergent group behavior originating from it.
The same authors presented a hierarchical model which can con-
trol groups with different degrees of autonomy [MT01]. Helbing’s
social forces model [HM95] was extended to simulate groups by
adding several attractive forces [PV08,BMdOB03]. Many models,
such as the one by Yersin et al. [YMMT08], include group behav-
iors and give more importance to one of the group members (often
called a leader) that others try to stay close to, while the leader
may try to stay close to all the others. Loscos et al. [LMM03] pre-
sented a model in which the leader decides about the motion of
the entire group, guided by local rules. Qiu et al. [QH10] alge-
braically modeled inter-group and intra-group relations. Villamil et
al. [VMdO03] discussed relations between agents’ internal states
and the ability of grouping.

Small-group simulation has attracted more interest: some empir-
ical studies regarding the spatial organization of pedestrian groups
[PE09, MPG∗10] have been conducted. Based on observations,
Moussaïd et al. employed a social force model-based approach
to organize group formations, while Peters and Ennis used dis-
crete formation templates, as Karamouzas and Overmars [KO12].
Yeh et al. [YCP∗08] placed different types of composite agents to
constrain agents in groups. Rojas and Yang [RY13] introduced a
group agent consisting of several hinge-connected slots which each
member follows. Alonso-Mora et al. [AMBR∗12] enabled a large
number of robots to transform among a set of formations by com-
puting their goal positions in each formation assignment. Similar
formations are achieved in Gu et al. [GD13], which also allows
constraints in the movement of the group. In the robotics com-
munity, Kimmel et al. [KDB12] maintain cohesion for a group of
robots based on the VO approach. Besides the microscopic simu-
lation methods mentioned above, macroscopic simulations can dis-
play macroscopic behavior of the whole crowd based on contin-
uum or fluid dynamics [TCP06, NGCL09]. The computer anima-
tion community also values the user interaction of the group control
in order to design a required movement [KLLT08, TYK∗09]. Re-
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cently, example-based and data-driven approaches have also been
used to construct groups according to data from videos of real
crowds [LCL07, CC14, JCP∗10, LCHL07].

Analysis Crowd simulation has been very active recently and
many different models have been proposed to simulate them; most
of them are designed to first consider crowds made of individual
agents. It is only in a second step that they are then extended to con-
sider moving groups [SSKF10,LA15,BOP15]. However, those ex-
tensions generally focus on one specific aspect of group behaviors,
like flocking, leading and following, moving in formations, etc. No
simulation methods have given the general formulation of what is
a group. As a result, methods that suit small group simulation will
not suit larger groups, or flocking algorithms won’t handle leader-
followers situations. Although rule-based and force-based methods
can intuitively model group interactions, the quality of the simu-
lated result has a high dependence on the complexity of rules and
the definition of force components.

In comparison to previous work, we attempt to generate a group
in a general bottom-up way; i.e., the group and its pattern are
emerged and evolved due to the interactions between individuals
and different behaviors can be achieved by tuning parameters of
individuals without the need of group-level rules.

Our interaction algorithm is based on the concept of VO, which
can easily be implemented and is computational efficient so that
it is suitable for real-time applications. We extend the concept of
VO, so that the grouping phenomenon can be reproduced directly
through the interactions between individuals. This approach is in
contrast with previous attempts also based on VO, such as Kimmel
et al. [KDB12]. In this latter approach, group structure is fixed,
agents have the same speed and velocity is defined by direction and
it cannot handle various situations like a leader-follower group. In
comparison, our neighbor selection mechanism enables emergent
group splitting and merging under external constraints, and the way
we define internal relations between members enables handling a
larger set of group behaviors and situations.

3. Velocity-based group simulation algorithm

3.1. Overview

Our solution simulates crowds made of both individuals and groups
based on a velocity-obstacle approach. Individual agents are agents
that navigate with no desire to stay close to another agent and are
steered exactly like in the existing RVO algorithm [VdBLM08]:
their velocity is so that their (short term) future distance of closest
approach with any other agent is always above a collision thresh-
old. Group agents have a desire to stay near specific agents (the
group members); these agents combine local avoidance with group-
ing. Grouping is performed by selecting at simulation time a sub-
set of agents belonging to the same group, called the connection
neighbors. A group agent’s velocity is then computed so that its
short term future distance of closest approach with its connection
neighbors is below a maximum distance threshold. More precisely,
our method is based on the run loop illustrated in Figure 2. During
preliminary initialization, a user sets relationships between agents
(Section 3.2). Then, during simulation, each agent: 1) selects a sub-
set of connection-neighbors from its group (Section 3.3); 2) com-

Figure 2: Overview of Simulation workflow.

putes the set of velocities that allow it to move towards its des-
tination while avoiding collisions and staying near its connection
neighbors (Section 3.4); 3) selects a new velocity from this set (Sec-
tion 3.5) and finally 4) applies the selected velocity and moves.

3.2. Setting up Relations

Users initialize a simulation by setting relation influences between
agents and thus creating group of agents that are related. This step
is performed through a relation matrix that encodes group relation-
ships between agents. Entry ei j ∈ [0,1] of the matrix represents the
relation influence, i.e., the preference of agent Ai to stay close to
A j: high values indicate high desire whereas a value of 0 indi-
cates no grouping relationship. Conceptually, the relation matrix
is a weighted directed graph describing logical (often asymmetric)
relationships between agents. We can see a simple illustrative ex-
ample of a relation matrix in Table 1: a crowd of 5 agents consisting
of 2 groups: {A1,A2,A3} and {A4,A5}. In the first group, A1 has a
stronger desire to stay near A3 than to A2 (e13 > e12).

A1 A2 A3 A4 A5

A1 - .7 1 0 0
A2 .7 - 1 0 0
A3 1 1 - 0 0
A4 0 0 0 - 1
A5 0 0 0 1 -

Table 1: Example of a relation matrix for two groups.

3.3. Selecting Connection-Neighbors

At runtime, each agent belonging in a group moves to stay close
to some of its influencing agents (according to the relation ma-
trix).The number of followed agents is limited, because maintain-
ing close distance to all can be infeasible. As demonstrated in Sec-
tion 4, the limit number of connection-neighbors nc is a main pa-
rameter of our method that affects emergent group behavior. This
section describes how we select for each group agent a subset of
connection agents, among all its influencing agents.

Selection Criteria We define a relation distance drel
i j between
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(a) (b) (c) (d)

Figure 3: (a) The velocity obstacle VOτ

A|B of a agent B to agent A is a truncated cone in the velocity space. (b) The velocity connection
VCτ

A|B of an agent B to agent A contains the velocities that result in grouping A and B together for at least τmin seconds before time τ. Here
τmin = 1. (c) VCτ

A|B for a rectangular constraint. (d) A situation where not all velocity constraints can be satisfied since VCτ

A|B ∩VCτ

A|C = ∅
(group neighbors B and C are not close to each other). In this case, agent A tries to stay close to both B and C.

agents Ai and A j that takes into account both the euclidean distance
deuc

i j and relation influence ei j:

drel
i j = deuc

i j · f (ei j), (1)

where f (.) is a monotonically decreasing function; i.e., f (0) ≥
f (ei j) ≥ f (1),∀ei j ∈ [0,1]†. Neighbors having the lowest nc rela-
tion distances will be selected as the connection neighbors. Com-
bining euclidean distance and relation influence ensures that nearby
low influencing agents will not overshadow further away high in-
fluencing agents.

During simulation, when several agents are influencing each
other they form a spatially distributed group. As all group agents
are selecting a limited number of connection-neighbors (potentially
smaller than the total number of agents in the group), a group can
split into several subgroups. This happens in an emergent man-
ner, depending on the group constraints. As an example, consider
a school trip where all the members of the school are initially to-
gether and might split into several subgroups due to navigation pur-
poses or because they have different goals. This emergent behavior
is studied in Section 4.1 and discussed in Section 5.

3.4. Velocity Connection

Having the set of connection neighbors for all agents, we need to
compute a velocity for each to perform both collision avoidance
and grouping. Technically speaking, we build on the principle of
reciprocal velocity obstacles (RVO [VdBLM08]). RVO allows per-
forming collision avoidance by always selecting a walking velocity
so that the distance of closest approach over a future time window
is above a collision distance threshold rmin. To make an agent move
near another agent, we add an upper bound rmax to the distance of
closest approach. The velocity of the agent will combine two local
interactions: collision avoidance and staying close. In other words,
it keeps distances with both a minimum and maximum boundary.

† We use an exponentially decreasing function.

Velocity Obstacle We first remind how the velocity obstacle VO
set is computed in an agent’s reachable velocity space. Let D(p,r)
denote an open disc of radius r centered at p. Given two agents A
and B, the velocity obstacle for A induced by B is the set of all
velocities of A that will cause a collision between A and B at some
moment before time τ. Formally:

VOτ

A|B = {v|∃t ∈ [0,τ] :

t(v+vB) ∈ D(pB−pA,r
min
A + rmin

B )}. (2)

In the velocity space, VO is a truncated cone and τ determines its
truncated boundary, as shown in Figure 3a. Velocities outside VO
are guaranteed to be collision free, which leads to the definition of
the set of collision avoiding (CA) velocities for A:

CAτ

A|B = {v|v /∈VOτ

A|B}. (3)

Velocity Connection We define the velocity connection VC as
the set of velocities that make the agent’s distance to another agent
within an upper bound in at latest time τ. For an agent A, the ve-
locity connection for A with respect to B can be formulated in a
similar way as VO:

VCτ

A|B = {v|∃t ∈ [τmin,τ] :

t(v+vB) ∈ D(pB−pA,r
max
A + rmin

B )}, (4)

where τmin is the minimum time spent to group together, which
should be more than the update period to prevent excessive dis-
placements in one time step. As shown in Figure 3b, τmin adds an-
other boundary to the VC as compared to VO. In our implementa-
tion, each of the curved boundaries of VC and VO are replaced by
a tangent line for efficiency.

When A succeeds in approaching B at a distance less than rmax
A ,
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A should preserve that distance at all times. Thus, the relative ve-
locity should stay in a circle centered at pB−pA with radius rmax

A
and thus the velocity connection becomes:

VCA|B = {v|τmin(v+vB) ∈ D(pB−pA,r
max
A + rmin

B )}. (5)

Formation Constraints The rmax
A boundary means that agents

tend to stay in an arbitrary position within a circle around neigh-
bors. However, groups often move according to a specific forma-
tion, e.g., members of small groups prefer to walk side by side.
Considering this, users can create additional formation constraints.
For some situations, we employ rectangular constraints by placing
boundaries Γ1 and Γ2 as shown in Figure 3c. Placement is deter-
mined by an offset ro f f set and a direction eorientation depending on
requested formations. The VC in then obtained by considering the
vertices of the rectangle at the current timestep and after τ seconds.

As an example, consider agent A with group neighbor B (Fig-
ure 4a). By setting eorientation to the moving direction B, A aims in
staying in an “abreast” formation with B. In the current implemen-
tation, we have three types of rectangular constraints, which can
give queuing, abreast and guide-follower patterns (Figure 4b). As
we show in Figure 5, agents keep their abreast formation even after
interacting in constrained environments. Generally speaking, the
constraint area can be any polygonal shape in the velocity space. If
the polygon is convex, the grouping velocity set can be obtained by
computing the convex hull of the vertices of the constraint polygon
and the polygon scaled by τ.

(a)

Abreast

Queue

Guide

(b)

Figure 4: Anisotropic Constraints. (a) A′1 and A′2 are possible
future positions for agent A. Both of them are acceptable in the
isotropic constraint whereas only A′2 is acceptable when having
a rectangular abreast constraint. (b) The currently implemented
anisotropic constraints.

Multiple VCs and VOs In multi-agent scenes, collision free ve-
locities can be chosen from the intersection of CA’s of multiple
nearby agents. Velocities keeping agents together to multiple con-
nection neighbors would be in the intersection of VCs. Therefore
velocities lying in both of the two intersections satisfy both group-
ing constraints and collision avoidance. However, as shown in Fig-
ure 3d, there are situations that either of the intersections becomes

(a) Isotropic ( [KDB12]) (b) Abreast Formation

Figure 5: (a) Using an isotropic constraint, agents will keep their
distances but not initial angles, whereas (b) using an abreast con-
straint forces agents to adapt as requested.

empty. In these cases, rather than selecting a velocity strictly from
the intersection set, we consider the preference of all reachable ve-
locities and the most preferred velocity is selected.

3.5. Velocity Preference

During simulation, a group agent has to move towards a target
while avoiding collisions and staying close to influencing agents.
Therefore, an agent has to select a velocity that balances between
these three, often conflicting criteria. We define m(v), as the pref-
erence value of selecting velocity v:

m(v) = mVO(v)+wgmVC(v)+wvmdes(v). (6)

Here, mVO, mVC and mdes indicate preferences for avoiding col-
lisions, staying with influencing agents (group cohesiveness) and
following desired velocity respectively. Each one of these compo-
nents is weighted by 1, wg and wv respectively (wg,wv ≤ 1); i.e.,
velocities that avoid collisions are typically preferred. High values
of m(v) indicate high preference of selecting velocity v. Having a
set of candidate velocities V = {v : |v| ∈ D(0, |v|max)}, we set the
agent’s new velocity vnew as the one with the maximal preference
value:

vnew = argmax
v∈V

m(v). (7)

|v|max is the maximum speed the agent can reach and is deter-
mined by the agent’s kinematic limitations and D(0, |v|max) con-
tains all the reachable velocities of an agent. The candidate veloc-
ity set V is constructed by sampling a number of velocities dis-
tributed over D(0, |v|max). In the following paragraphs, we describe
the three components of Equation 6.

Grouping For an agent Ai having a set of connection neighbors
CNi, preference to the velocity connection mVC is dependant on
how far away the candidate velocity is from all velocity connections
{VCi| j : A j ∈ CNi}. We set:

mVC(v) =− 1
|CNi| ∑

A j∈CNi

ei jλ
VC
j (v), (8)

submitted to COMPUTER GRAPHICS Forum (8/2016).



6 Z. Ren & P. Charalambous & J. Bruneau & J. Pettré and Q. Peng / Group Modeling: a Unified Velocity-based Approach

where |CNi| is the number of connections neighbors of agent Ai.
ei j is the relation influence of agent A j to agent Ai (Section 3.2);
large values of ei j increase the attraction of A j to Ai so that the pre-
ferred velocity is closer to VCi| j. Finally λ

VC
j (v) weighs velocities

based on distance to the boundary of velocity connections:

λ
VC
j (v) =

{
dVC

j if v /∈VCi| j
0 if v ∈VCi| j

. (9)

dVC
j is the nearest distance from v to the boundary of VCi| j.

Collision avoidance Differently to mVC, mVO considers the dis-
tance from v to VOi| j. Let λ

VO
j (v) be:

λ
VO
j (v) =

{
dVO

j if v ∈VOi| j
0 if v /∈VOi| j

(10)

Here dVO
j is the nearest distance from v to the boundary of VOi| j.

The maximum λ
VO
j (v) measures how much that agent violates the

constraints. Thus, we use it to penalize choosing v; mVO(v) is de-
fined as the negative of this penalty:

mVO(v) =−max(λVO
j (v)) (11)

Desired velocity Finally, to define a preference to desired veloc-
ity mdes, we set λ

des(v) to be the distance between v and the desired
velocity. Thus mdes is defined as:

mdes(v) =−λ
des(v) (12)

In Section 4.1 (and to a greater extend in the Appendix), we give
an analysis of the effect of weights wg and wv on group behavior.

3.6. Merging

Figure 6: Splitting/Merging Agents of the green group split to
avoid the agents of the red group. Setting nic = 1, an extended
connection is made between agents of the two subgroups allowing
them to merge back together directly after the end of the avoidance.

As introduced in Section 3.3 and demonstrated later in Sec-
tion 4.1, group splitting can emerge. In some types of groups, such
as families or small groups of friends, there is a high preference in

members of groups to be attracted together. Though it is common
to observe these types of groups split into subgroups for avoidance
purposes, most of the time they merge back together as soon as
they can; i.e., they aim in staying close to both nearby and far away
group members. A similar constraint can be added to the model
(Figure 6): in addition to selecting nc connection neighbors, agents
can select a limited number of “extended” connections nic from
other subgroups (typically nic ∈ [1,2]). This allows agents to be at-
tracted to both high influencing agents and to at least an agent from
another subgroup and therefore guiding subgroups back together.
By default, nic = 0 which means that subgroups will not seek to
merge as soon as possible; rather they will be grouped after some
time assuming they have the same goal. An example demonstrating
this behavior can be seen in Section 4.2.

3.7. Extending the Model

In Equation 6 we have set three main constraints on speed to get
the general group behaviors. The first constraint, mdes(v) models
an agent’s desire to move towards its goal. By adding the constraint
mVO(v) we extend the model with collision avoidance behavior.
Similarly we add grouping behavior by including mVC(v) in the
equation. Following the same motif, an agent’s behavior can be-
come more complex by adding additional constraints. In this sec-
tion we demonstrate such an application; we add a constraint on
the minimum preferred distance agents want to keep from each
other (Figure 7). By adding this constraint, we aim in reducing the
rigidity of the groups which is a result of the grouping constraint;
agents now aim in additionally keeping empty space around them
when this is possible.

Obstacle

𝑟𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑟𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑎𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒

Figure 7: Preferred distance Agents have a new minimum dis-
tance constraint that is more flexible than collision avoidance, al-
lowing them to keep some empty space around them whenever this
is possible.

Keeping a minimum preferred distance is a behavior quite simi-
lar to collision avoidance. In both cases, a minimum distance with
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Table 2: Tested Parameters Parameters used in the sensitivity
analysis; these affect the generated groups.

Eqn. Range Value Description
rmax 4,5 [1−4] 1.2m Max. distance
wg 6 [0− .5] .5 Group weight
wv 6 [0− .5] .2 Des. velocity weight
nc 8 [1−45] 3 Max. # of neighbors
|vi| 12 [.5−1.5] 1.33m/s Pref. Speed of agent Ai
ei j 1 [0−1] 1 Influence of A j to Ai

other agents is kept. The main difference is that in the case of col-
lision avoidance, the minimum distance with others is strictly kept
whereas the minimum preferred distance is a preference and can
be ignored in specific situations, mainly when there is not enough
space for it to be satisfied. To incorporate this behavior, we extend
Equation 6 by adding a new constraint mV I(v) using the same for-
mulation as mVO(v) (Equation 11) but with increased radius. Ad-
ditionally, in order for this to be a more flexible constraint, we as-
sociate a very small weight wi ≈ 0.1 ∗wg. By doing this, agents
will try to keep their distance from others but only if this is possi-
ble (see Figure 7). Therefore, Equation 6 can be replaced with the
following:

m(v) = mVO(v)+wgmVC(v)+wvmdes(v)+wim
V I(v). (13)

4. Results

To evaluate the performance and quality of our system, we (a) test
the effect of parameters on the results (Section 4.1) and (b) demon-
strate example scenes with various types of groups (Section 4.2).

4.1. Parameter Analysis

The purpose of the sensitivity analysis is twofold; (a) to demon-
strate that our framework is capable of generating a varying num-
ber of groups of different properties and (b) to demonstrate sets of
parameters that can be used to generate desired group behaviors
(such as the ones demonstrated in Section 4.2). To do so, we per-
formed extensive tests on the effect of our system’s parameters on
different quantitative and qualitative characteristics of crowds for
different scenarios. We identify four parameters that affect group
behavior the most; the number of connection neighbors nc, weights
wg and wv for group and desired velocity preference respectively
and finally the presence of leaders. We studied the effect of these
parameters on various group properties such as cohesion, density,
velocity, collisions and goal completion (see the Appendix for def-
initions).

4.1.1. Scenarios

The analysis is performed by simulating different scenarios that
have the same basis, a group of agents where all agents have the
same goal and equal weights in the relation matrix. During sim-
ulations, different kinds of internal or outside influences were in-
troduced aiming to introduce perturbations to the group’s behavior.
Simulation were run multiple times (10 for each different case) for

Figure 8: Scenarios The scenarios being used for the analysis. Blue
indicates the agents being analyzed, green opposing agents and red
leaders.(top) SimSpeed (center) SimCFlow (bottom) SimLeader.

each different set of parameters with random initial positions for all
agents. All of the simulations run long enough to capture the full
effect of the perturbation. For all of the examined scenarios, all pa-
rameters except the ones being tested have default values (Table 2).
We define three main scenarios for our experiments (Figure 8):

1. SimSpeed: We initialize a group of 90 agents with different pre-
ferred velocities v : |v| ∼U(.5,1.5)m/s.

2. SimCFlow: The outside influence is a set of 135 individual
agents that move on the opposite flow of the group of 90
agents. Additionally, all agents have the same preferred speed
|v|= 1.33m/s.

3. SimLeader: We set the group size to 80 members, initially
standing still without any goal (i.e., |v|= 0m/s) and introduce a
leader that aims in passing though them and attracting them to
its own goal. To design a leader, we initialize the relation matrix
such that the leader has a higher influence on other agents; in
our experiments ei j = 1 if A j is a leader and ei j = .5 otherwise.

For the first two scenarios we set the group to move from left to
right whereas on the 3rd, agents start standing still.

4.1.2. Parameters Analysis

In this section we discuss the effect of some important parame-
ters on observed group behaviors. A more thorough analysis can be
found in the supplied Appendix.

Connection Neighbors The number of connection neighbors nc

has a big impact on group cohesion. As an example, consider how
varying nc affects group behavior for the SimCFlow scenario (Fig-
ure 9). Having a small nc results in the splitting of the group into
several small subgroups whereas progressively increasing nc results
in fewer and larger more cohesive groups. Setting nc = 45 that cor-
responds to half the agents of the group, we get a very cohesive
group where all group members stay together no matter the na-
ture of the perturbation (different speeds or counter-flow of agents).
Additionally, as expected and noticed in real life situations, having
higher cohesion has a negative impact on speed or goal completion;
agents need to slow down or temporary change directions so that
they stay together. In the SimSpeed scenario for example, where
agents are initialized with different desired speeds, having a small
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nc ([2 : 5]) results in clusters of agents that move with different
speeds whereas higher values (nc > 5) result in larger, slower and
more cohesive groups.

nc = 1 nc = 5

nc = 15 nc = 45

Figure 9: Number of connections Increasing the number of con-
nections increases cohesion forcing clusters to stay together when
interacting with a flow of agents (SimCFlow).

Weights Weights wg and wv (Equation 6) play an important role
in emergent group behaviors; they aim in balancing between stay-
ing with group members and satisfying desired velocity respec-
tively (Figure 10). Additionally, collision avoidance is affected in-
directly; both wg and wv are always kept below 1 so that collision
avoidance is always the most important criteria in selecting veloc-
ities. As expected, low values of wg lead to poor group behavior
whereas high values give good group behavior but also agents that
move less efficiently towards their goals. Similarly, low values for
wv lead to agents that do not move efficiently towards their goals
whereas high values forces them to prefer moving towards their
targets in the most efficient way neglecting group behaviors. We
found that a good balance between group and velocity preferences
for most group behaviors is to set wg = 0.5 and wv = 0.2; here wg is
bigger than wv and high enough to guide agents in staying together
while still moving towards their goals.

wg = 0,wv = 0 wg = 0,wv = .2

wg = .2,wv = .2 wg = .5,wv = .2

Figure 10: Weights When group weight wg is large enough, the
group does not break into clusters even in large interactions with
other groups (SimCFlow).

Leaders/Followers In the leader-follower situation (Sim-
Leader), some parameters have significant importance since they
influence the leader’s capacity to lead other agents. The most im-
portant parameter is the number of connections nc. As we can see
on the example in Figure 11, if nc is close to zero, the leader agent
will not be able to attract all of the agents since not all of them

can perceive it. If on the other hand nc is large, the leader will
not have enough influence on the other agents to attract them; the
group prefers to stay still. We found that an intermediate value of nc

around 4 optimizes the leader’s capacity to lead other agents; this
is the only situation in Figure 11 where the leader is able to lead all
the other agents. On the other hand, weights wg and wv have simi-
lar influence to the other scenarios; followers have no goals which
practically means wv does not play any role in their behavior con-
trary to the leader. If the leader agent favors group behavior (wg),
then it will be attracted by the “no goal” heavy group and will fail to
achieve its goal. If the leader favors velocity preference, then it will
lose the majority of the group members whilst moving as efficiently
as possible towards its goal.

nc = 1 nc = 4

nc = 10 nc = 15

nc = 20 nc = 45

Figure 11: Leader/Followers Resulting groups for different nc. In-
creasing the number of connections neighbors makes the standing
group more rigid and difficult to move using a single leader.

4.2. Example Cases

Based on the results of the previous paragraphs, we designed some
scenes consisting of multiple types of groups; these include tours
with guides, small social groups, big cohesive groups, etc. Please
consult Figure 1 for an overview of some of the group behaviors we
discuss here and the supplemented video for group animations (and
implementation details) in various environments. Here we discuss
the parameters used to achieve these behaviors. For all cases, de-
fault values are the ones shown in Table 2 unless specified. In both
example scenes, we can see some or all of the following types of
groups at the same time.

Pedestrians We introduce groups of 2-4 agents walking together
in streets as in typical real life environments. To achieve small
cohesive groups we set rmax = 1 and nc = 1 for groups of 2-3
agents and nc = 2 for 4 agents (Figure 1b); i.e., each character
only considers friends for group navigation. Additionally, we used
the abreast line constrained (as described in Section 3.4) so that
agents maintain side-by-side walking behavior even when interact-
ing with other agents. In Figure 5 we show a comparison between
using isotropic and anisotropic constraints.

Artist Performance Our system makes it easy to design a street
performance (Figure 1a); people gather around a performer and
stop to watch her performance. To achieve this, we set the per-
former as a leader but increase its rmin to 4 and set rmax = 5. This
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enforces a personal space around the performer where other agents
in the group cannot enter. Additionally we set nc = 2 for all agents
so that agents in the same groups stay together.

Guided Tourists Guiding a group of tourists using a guide (Fig-
ure 1c) can be achieved by setting low nc for the tourists so that they
stay with their closest friends whilst keeping the group intact. As
discussed in Section 4.1 and the Appendix, setting nc ∈ [3−7] gives
the optimal results; here we set nc = 3. Additionally, the guide has
influence ei j = 1 to all other members of the group and the tourists
have an influence of .5 to all other members including the guide.
Finally, when constructing the VC with the respect to the guide,
a guide constraint is used (Figure 4b) to keep the tourists staying
behind the guide.

Students/Teachers Similarly to the guided tourist example, we
set a higher influence of the teachers to the students (1 to .5 of
the students) and set the relation matrix as seen in the video (Fig-
ure 1d). Students have no goal, i.e. their velocity will be zero if
there are no teachers nearby, and are led by the teacher. By em-
ploying the queue constraint between students and a abreast con-
straint between student and teacher, students will walk in a queue
formation with the teacher being on the side.

Crosswalk We also demonstrate two different types of groups
crossing a crosswalk (Figure 12); two big rigid groups (left) with
a queue constraint and two groups consisting of multiple small
groups of 2-3 agents (right) using a circular constraint. In both
cases, nc = 1. In the first case, groups naturally form lanes to avoid
each other more efficiently whereas on the second case the groups
mix together but do not split from their groups.

Figure 12: Demo: Crossing

Switching between groups We are also able to simulate follow-
ers that switch between different leaders. These kind of situations
can be observed in tourist attractions where tourists might switch to
groups that they consider more interesting (interest is the influence
of each leader). Another interesting application could be a hero unit
in a game which when it acquires more experience/influence, can
attract units from another hero unit. This phenomenon can natu-
rally emerge with our approach by setting a relation matrix where
multiple leaders have non zero influences on the same follower. We
show an example of this behavior in Figure 13; the yellow agents
following leader A at the beginning switch to following leader B,
since B has higher influence to them than A does.

Figure 13: Demo: Switching Groups

Dynamically Switching Parameters As described in Section 3,
a user defines the relation matrix and relevant parameters at a pre-
processing step. This does not imply that parameters cannot change
at runtime; parameters can be switched during simulation time to
change group behavior. We demonstrate such a scenario here (Fig-
ure 14) where a group in a square formation changes at runtime to
a line formation to pass through a corridor more efficiently and
then changes back to the original parameters (and therefore the
square formation). The square formation is setup using nc = 3 and
rmax = 1; the front agents use the abreast constraint whereas the
others use the line constraint (the relation matrix can be seen in the
supplied video). To switch to the queue formation, we set rmax = 2
and set the queue constraint to the front agents.

Figure 14: Demo: Dynamically Switching Parameters

Inter-group interaction During group interactions, groups can
bypass each other or one can split spatially into subgroups. Assum-
ing a small number of connection neighbors nc, these subgroups
might not merge back again soon. If desired, group re-merging can
be enforced as presented in Section 3.6. In Figure 15 we demon-
strate that our approach is able to reproduce these different behav-
iors with the right set of parameters. Setting nc = 3 to the group on
the left, results to a big cohesive group that bypasses the small one.
Decreasing nc to 2, makes the group split to avoid the small one.
If the large group does not consider agents from both subgroups, it
will remain split for a long time. To encourage re-merging, we force
each agent to consider at least another agent from the other sub-
group by setting nic = 1. For all cases, the small group had nc = 3.

Initial Setup Bypassing

Splitting Merging

Figure 15: Group Interactions Different interaction behaviors can
emerge depending on parameters.

5. Discussion and Limitations

We propose a crowd simulation algorithm suitable for both indi-
viduals and groups by extending a velocity-based approach with
new kinds of interactions between agents. These local interactions
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enable two or more agents to move while trying to stay below a
bounded distance from each other. Agents select other agents to
stay close to based on a relation matrix that is easily set up by a
designer. This bottom-up way to generate group behaviors gives us
a very flexible solution introducing significant progress beyond the
state of the art in group simulation.

It is a unified solution to group simulation, since we can simulate
a large number of different group situations just by setting appro-
priate parameters. This approach can simulate such diverse groups
as couples of walkers, lanes, formations and tourists with complex
structure (e.g., group guide with different families in the group,
etc). We demonstrate crowds made of mixtures of groups of differ-
ent types as well as individual agents; all using the same algorithm.
We show some intuitive correlations between the parameters space
and the visual aspect of moving groups; this allows a designer to
setup a simulation for a given desired scenario by selecting appro-
priate parameters. Finally, the flexibility of the solution produces
interesting patterns and emergent behaviors. From the simple be-
haviors of staying together and avoiding collision, simulated agents
demonstrate the ability to reproduce real groups behaviors such as
group splitting, flow smoothing, group switching, fast agents slow-
ing down to wait for slower group members, etc.

Our approach however has some limitations. First, our definition
of local interactions in a group is a unique one: stay within a dis-
tance (or polygonal area). We would like to consider some other
types of interactions such as holding hands that adds a very strong
navigational constraint or more complex positioning with preferred
position instead of hard constrained one. Moreover, we would like
to add some higher level behaviors such as members of a group that
meet and gather somewhere. As we show with the formation con-
straint (Section 3.4) and the merging (Section 3.6), constraints can
easily be added to the velocity computation or neighbors selection
to handle more complex behaviors. We demonstrate in Section 3.7
an approach to reduce the rigidity of moving groups that might arise
in our system due to the hard constraint of staying together (Equa-
tion 8).

We would also like to evaluate the level of realism that can be
achieved by the proposed system. This is a very difficult task since
reference and observations data on groups are limited. The de-
sign of relevant evaluation metrics for groups moving in crowds
needs addressing as well. This by itself is an entire problem, cer-
tainly out of the scope of this paper, and which requires a large
effort in performing relevant evaluation. Finally, given the propor-
tion of groups in real crowds (> 70% move in groups in typical
crowds [MPG∗10]), it is certainly a promising research path for
considering other type of applications, like architecture design and
safety.

6. Conclusions and Future Work

We have presented a new microscopic algorithm to simulate diverse
types of groups in crowds using a set of intuitive parameters. We
have three main contributions. Firstly, we formulate a new model
of local interactions between agents so that they form groups of
agents moving together. We have demonstrated the ability of this
local model to handle different kind of groups (couples to very large

groups, leader(s)/followers groups, formation walking groups, ...)
as well as a wide variety of behaviors (various levels of cohesion,
group splitting and merging, group switching, ...). Secondly, we
proposed a general, unified, crowd simulation algorithm which con-
siders mixtures of groups and individual agents moving in the same
scene. A simple relation matrix and few parameters determine the
whole crowd in an intuitive way. Finally, we present an empirical
mapping between the parameter space of our solution and emer-
gent group behaviors: this makes the parameter tuning stage easy
with respect to the desired simulation scenario. Our results section
demonstrates that complex scenarios can be achieved with relative
ease.

Our results open promising future research paths. Our priority
is to extend our solution with other new types of interactions be-
tween agents of the same group and new types of groups. In re-
ality, groups are places of possibly complex relations and interac-
tion between members and also group compositions can evolve in
time. We demonstrated that we can switch parameters in simulation
time, resulting in different group behaviors; by introducing mor-
phing abilities we could have more control on group transitions.
Additionally, by introducing complex interactions we would again
extend the validity domain of our solution. Finally, an interesting
avenue would be to introduce models of local interactions between
2 groups (or more) or between groups and individuals. Many inter-
esting situations involve these kinds of interaction, like groups of
teammates from opposing teams, or specific behaviors of individu-
als with groups [BOP15].

Finally, our more long term objective is to evaluate our model
from real crowd data. Some recent tracking techniques [PEVG10]
or motion analysis techniques [CKGC14] are able to detect groups
in crowd motions. These techniques could be put into practice to
create a database on group behaviors and their influence on traffic.
This would certainly serve as a basis to address the problem of
evaluating the level of realism of our solution.
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