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ABSTRACT
“Humans at rest tend to stay at rest. Humans in motion tend to cross
the road – Isaac Newton.” Even though this response is meant to be
a joke to indicate the answer is quite obvious, this important feature
of real world crowds is rarely considered in simulations. Answering
this question involves several things such as how agents balance be-
tween reaching goals, avoid collisions with heterogeneous entities
and how the environment is beingmodeled. As part of a preliminary
study, we introduce a reinforcement learning framework to train
pedestrians to cross streets with bidirectional traffic. Our initial
results indicate that by using a very simple goal centric representa-
tion of agent state and a simple reward function, we can simulate
interesting behaviors such as pedestrians crossing the road through
crossings or waiting for cars to pass.
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1 INTRODUCTION
The world around us is animated. We experience and interact with
human crowds daily in many places such as streets, workplaces,
shopping malls, football stadiums or concerts. Humans in crowds
participate in various types of interactions with various entities
such as other humans, cars and public transportation. The dynamics
of crowd motion and the richness of these interactions can signif-
icantly impact the ambiance and believability of a scene, and are
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Figure 1: Training environment.

thus a crucial element of computer generated environments used
in computer games, movies, urban studies, safety, traffic control
and management and autonomous driving. Despite some really
high quality results, most of these systems do not take into account
important heterogeneous interactions between humans and traffic
such as pedestrians crossing the streets. Moreover, research has
shown that autonomous vehicles could potentially decrease road
accidents that are caused by human error, by up to 80% by 20401.
The development of safe autonomous vehicles and road networks
requires an in-depth analysis of the interaction of vehicles, pedes-
trians and the environment. In this work, we show initial results of
a deep reinforcement learning based framework to train agents to
cross streets with traffic. Our framework is able to simulate pedes-
trian street crossing behavior under various conditions without any
explicit knowledge of the rules that govern this behavior.

2 RELATEDWORK
Crowds There are many crowd simulation techniques that can
broadly be categorized as macroscopic or microscopic. In the macro-
scopic approaches, crowds are modeled as a whole with no distinc-
tion of the individuals; these methods fail to simulate variety in
motion and behaviours. Microscopic approaches on the other hand
consider each individual separately allowing for more variety and
aim to get emergent global behaviour. Interested readers can refer
to [14] for a more comprehensive discussion on crowd simulation
techniques. Of particular interest to this work are the microscopic
data-driven models; the promise here is that agents will “learn” how
1KPMG, Marketplace of change: Automobile insurance in the era of autonomous
vehicle
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Figure 2: Overview. The agent state is defined relative to its
current goal and consists of three consecutive agent obser-
vations. Agent observations are defined suing three distinct
sets of rays that are cast towards a set of predetermined an-
gles. These rays find nearest distances related to a) vehicles,
b) roads and c) zebra crossings. State also includes the cur-
rent velocity relative to the goal vector.

to behave from real-world examples, keeping the natural crowd
ambiancewith awide range of complex individual behaviors [1, 5, 7–
9, 21]. Some techniques use observations of real people to learn
parameter values for simulators [12, 13, 15, 20]. Recently, several
authors proposed Reinforcement Learning as approaches to learn
crowd simulation policies by simulation [2, 4, 6, 10].

Pedestrian-car interactionsRasouli et al. [17] introduced large
datasets of interactions between pedestrians and human-driven ve-
hicles, to analyze the pedestrian crossing behavior. Most of the
studies agree that pedestrian’s crossing decision depends mostly on
vehicle dynamics (vehicle’s position, velocity, acceleration); these
can be summarized using the time to collision (TTC) parameter [11].
However, [18] show that vehicle speed, is the most determinant
factor of pedestrian’s decision process. Apart from car direct indi-
cations such as its movement, non-verbal communication between
the driver (or vehicle) and the pedestrian was also examined [16, 17].
For instance, pedestrians intending to cross a non-signalized road,
seek to have an eye contact communication with the oncoming ve-
hicle’s driver in order to agree if the driver will yield. Other studies
showed that crossing behavior also depends on agent properties as
their age, gender or group size[3].

3 OVERVIEW
We propose a Reinforcement Learning (RL) environment to train
agents to cross streets. We employed the Proximal Policy Optimiza-
tion Algorithm [19] as the learning approach.

States/Actions. The state of an agent is defined in a goal centric
2D-local coordinate system; i.e., it is located at the current position
of the agent and has a y-axis that is aligned towards the current
goal of the agent Figure 2. We found that defining the state in a goal
centric system is a) more stable than defining it using the agent’s
velocity, b) it converges to a good policy faster and c) this state rep-
resentation generalizes better than a global representation of state.
The agent perceives the environment in 220 degrees using three
distinct batches of rays that record closest distances towards a) cars,
b) streets and c) crosswalks at 13 predetermined angles. Addition-
ally, we record two values that indicate if the agent is currently on
a crosswalk or on a street. Three such consecutive observations
define the agent centric state; this representation indirectly encodes
the relative movement of the agent as compared to cars, streets and

crosswalks. This gives a state s ∈ R123. An action a ∈ R2 in our
framework is velocity that is relative to the agent’s local coordinate
system.

Learning. In an RL setting, an agent interacts with an environ-
ment over a sequence of episodes trying to maximize expected cu-
mulative rewards. We employ a simple as possible environment that
will allow us to test different ideas and allow to incrementally extend
the learning system to more complex behaviors and environments.
To improve training time, we train multiple agents concurrently.
We initialize a 25m ∗ 25m environment with two bidirectional roads
(Figure 1). We initialize cars with random speeds v ∈ [1, 10]m/s
that move both ways; these cars decelerate a) when they approach
slower moving cars and b) when they reach a crosswalk. When
cars leave one side of the environment, they are translated to the
opposite side with randomized speed to help in generalization. We
concurrently train 24 agents in 24 similar environments using Prox-
imal Policy Optimization (PPO) [19]. At each training episode, an
agent and its goal are placed randomly in the environment. An
episode finishes when an agent a)reaches its goal, b) hits a car, c)
leaves the bounds of the environment or d) does 1000 simulation
steps (20 seconds of simulation time) failing to reach its goal. Agents
in our environments make 10 decisions per second.

Reward Function The reward function R(s ,a, s ′) of an agent
transitioning between states s and s ′ by taking an action a defines
the task. In the crossing scenario, agents need to a) successfully
reach their goals, b) avoid collisions with cars, c) prefer to move
through crossings if advantageous and d) prefer to move towards
their goals. We defined the following reward function:

R(s ,a, s ′) =


−1.0, car collision
0.5, reached goal
Rl + Rr + Rc + Rдm + Rд , otherwise

Rl = −0.0001 is a living penalty that motivates agents to move
instead of standing still, Rc = 0.001 is a reward if the agent is on a
crossing, Rr = 0.002 is a penalty if the agent is on a road and Rд =
0.0001 ∗ gpr rewards or punishes how much the agent progressed
towards the goal (gpr is the difference in distance towards the goal
between consecutive decisions of the agent.).

4 DISCUSSION
Initial results are very promising; our learned policies show agents
exhibiting interesting behaviors such as the oneswe described in the
previous sections. We refer the interested reader to the short video
that accompanies this poster. This is preliminary work and many
things need to be considered such as more complex environments
and interactions.
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