
Pacific Graphics 2014
J. Keyser, Y. J. Kim, and P. Wonka
(Guest Editors)

Volume 33 (2014), Number 7

A Data-Driven Framework for Visual Crowd Analysis

Panayiotis Charalambous1, Ioannis Karamouzas2, Stephen J. Guy2 and Yiorgos Chrysanthou1

1University of Cyprus, Cyprus 2University of Minnesota, USA

REFERENCE 

TEST 

1. DATA INPUT 2. ANOMALY DETECTION 3. EVALUATION 

𝑈 𝑡  Displacement 

NN Distance NN Diff in 
Velocity … 

Curvature 

w 𝑡  

Figure 1: System Overview (1) Reference data from real crowds or relevant simulations are compared against testing data
from simulations the user wishes to analyze. (2) Using a variety of metrics our framework automatically detects outliers using
anomaly detection techniques such as Pareto Depth Analysis. (3) The resulting analysis is then shown as set of different visu-
alizations (including heatmaps, histograms, 2D/3D animation players and a 2D outlier browsing tool) that characterize the test
data compared to the reference data – here the most anomalous data are shown in red.

Abstract
We present a novel approach for analyzing the quality of multi-agent crowd simulation algorithms. Our approach is
data-driven, taking as input a set of user-defined metrics and reference training data, either synthetic or from video
footage of real crowds. Given a simulation, we formulate the crowd analysis problem as an anomaly detection
problem and exploit state-of-the-art outlier detection algorithms to address it. To that end, we introduce a new
framework for the visual analysis of crowd simulations. Our framework allows us to capture potentially erroneous
behaviors on a per-agent basis either by automatically detecting outliers based on individual evaluation metrics
or by accounting for multiple evaluation criteria in a principled fashion using Principle Component Analysis
and the notion of Pareto Optimality. We discuss optimizations necessary to allow real-time performance on large
datasets and demonstrate the applicability of our framework through the analysis of simulations created by several
widely-used methods, including a simulation from a commercial game.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

Computer generated crowds are commonly used in films,
video games, training simulators and virtual environment
applications. Realistic simulation of such crowds is an im-
portant factor for the level of user immersion and the value

of the conclusions one can draw from these simulations.
Over the past twenty years, the field of computer graph-
ics has experienced a dramatic increase in the number of
tools, approaches and algorithms focusing on creating com-
pelling crowd motions. Currently, several companies spe-

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



P. Charalambous, I. Karamouzas, S.J. Guy & Y. Chrysanthou / A Data-Driven Framework for Visual Crowd Analysis

cializing in offline modeling and rendering offer tools to
author crowd simulations [MAS] and several game engines
have also recently developed modules to assist in modeling
crowds [UNI]. As more approaches to virtual crowds are
introduced, developing better methods to analyze, evaluate,
and improve the quality of these simulations becomes in-
creasingly necessary.

The complexity inherent in a simulation involving mul-
tiple interacting characters, makes evaluation a non-trivial,
challenging problem. Some issues are easy to identify and
measure such as characters colliding with each other or the
environment, or characters walking way too fast. Other is-
sues are more subtle: jamming too much at narrow passages
or unnecessary backtracking. Some crowd simulation sys-
tems avoid these types of problems, however the result might
still not be satisfying. A crowd in a city, where each charac-
ter walks directly to its target in the most efficient way might
end up looking robotic and spiritless. This is in contrast to
a real-life crowd where many phenomena appear, such as
people walking in groups, chatting, wandering from shop to
shop and so on. We propose that the challenge of detecting
these type of issues in crowd simulations can be addressed
through the use of data-driven analysis. In our work, refer-
ence data (either synthetic or real) is used both to indicate
what a correct simulated motion should look like and to au-
tomate the task of finding anomalous behaviors.

Our work complements existing research in crowd analy-
sis by focusing on a user-in-the-loop analysis. To that end,
we seek to develop a framework which provides real-time,
visual feedback on potential anomalies in a crowd, accom-
modates large data sets, and allows users to quickly test dif-
ferent types of criteria to evaluate behaviors (e.g., unusual
speeds or unusual densities). Crucially, we also seek to allow
users to choose multiple different and often conflicting cri-
teria simultaneously, for example, a user may like to detect
anomalous agents whose speed is unusually high given their
current density. To find these type of outliers, we will ex-
ploit recent advances in machine learning such as the Pareto
Depth Analysis (PDA) approach [HXCH12] to reason over
multiple criteria in a principled fashion. While, PDA can be
too slow to use for real-time analysis, we propose some im-
portant modifications which allow us to perform an approx-
imate PDA analysis in real-time.

Contributions: We propose a new data-driven crowd
analysis framework that formulates the problem of anoma-
lous behavior detection in crowd simulations as an outlier
detection problem. Our framework allows users to compare
crowd simulations to reference data across a variety of cri-
teria. By visually highlighting behaviors that are likely erro-
neous in an automated fashion, our framework allows users
to quickly find errors in simulations even in large, com-
plex scenarios. We show several applications of our frame-
work by using current state-of-the-art outlier detection tech-
niques to analyze various recent crowd simulation methods

in several different scenarios. The main advantages of our
approach are:

• It enables unsupervised anomaly detection, without the
need for manually labeling any reference data.

• It can identify both atypical behaviors as well as missing
features from the simulation by allowing a two-way com-
parison between a simulation and a known dataset.

• It enables a principled application of multiple evalua-
tion criteria by introducing a new real-time variant of the
Pareto Depth Analysis outlier detection method.

• The entire system runs at interactive rates, allowing users
to quickly switch between different reference datasets and
different evaluation criteria to get a more complete under-
standing of a method’s potential errors (Figure 2).

The rest of the paper is organized as follows. We highlight
related work in Section 2. In Section 3, we introduce our
crowd analysis framework, and in Section 4 we detail the
necessary modification to the Pareto Depth Analysis method
for real-time use. We demonstrate the applicability of our
framework for crowd simulation and evaluation in Sections 5
and 6. Plans for further research are discussed in Section 7.

2. Previous Work

Crowd Simulation. Over the past two decades numerous
models have been proposed to simulate crowds of inter-
acting characters. The seminal work of Reynolds on flock-
ing has been influential in this field [Rey87]. Since then,
many different crowd models have been proposed, including
flow-based models that dynamically compute vector-fields
to guide the crowd motion [TCP06, NGCL09], force-based
approaches that treat characters as particles and model their
interactions using physical forces [HFV00, KHvBO09], and
geometrically-based approaches that compute collision-free
velocities for the characters using sampling or optimiza-
tion techniques [GCK∗09,KSHF09,OPOD10,vdBGLM11].
Most relevant to our work are data-driven simulation meth-
ods [LCHL07, JCP∗10, CC14]. Like our framework, these
approaches use example crowd data, but seek to create new
simulations rather than compare against it for evaluation. We
refer the reader to the survey of Pelechano et al. [PAB08] for
a more comprehensive discussion on crowd simulation.

Crowd Analysis. The most typical way to assess the cor-
rectness of a simulation is by devising a number of mean-
ingful evaluation metrics, such as the time required for the
characters to reach their destinations or the average num-
ber of collisions. In the animation community, Reitsma and
Pollard [RP07] defined task-based metrics for evaluating the
quality of individual trajectories, Pelechano et al. [PSAB08]
used presence as a metric to validate simulated crowd behav-
iors, and Singh et al. [SKFR09] proposed a number of pre-
defined test-case scenarios along with different quantitative
metrics to objectively assess the steering behaviors of virtual
characters. More recently, Guy et al. [GvdBL∗12] proposed
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Figure 2: Different results can be produced in the proposed
framework depending on which data are used as training and
which as testing. In this table, R are reference data from de-
sired behaviors and E are the data under examination.

the entropy metric to estimate how closely a given simula-
tion state matches real-world data.

Most closely related to our work, the Steerbug frame-
work, introduced in [KSA∗09], uses a combination of met-
rics and predefined rules to identify behaviors of interest
and atypical behaviors that may reduce the quality of a sim-
ulation. In contrast, Lerner et al. [LCSCO10] proposed a
data-driven approach that determines how similar the behav-
iors/trajectories of simulated entities are to the ones obtained
from video footage of real crowds. This approach was ex-
tended in [KO12] to evaluate the behavior of small pedes-
trian groups. Conceptually, our framework seeks to capture
the advantages of both the user-driven analysis presented in
SteerBug and the data-driven driven evaluation of the later
two papers in a robust fashion.

3. Anomaly Detection Framework

Broadly speaking, our framework seeks to automate the pro-
cess of analyzing a simulation’s output by comparing it to
reference data. We assume as input both a set of reference
data (real or simulated) that captures typical, desired crowd
motion and a set of user-selected evaluation criteria. We then
use outlier detection algorithms which when trained can be
used to evaluate any new set of trajectories. Both the data
to be evaluated, and the reference training data consist of
trajectories that track the positions of agents in time. Paths
(or segments of these paths) that are found to be anomalous
are highlighted for the user using heatmaps, histograms and
other visualization approaches as important areas for further
investigation (see Figure 1 for an overview).

There are two different modes of using our proposed ap-
proach: outlier detection and novelty detection (Figure 2).
In pure outlier detection, the same data are used for both
training and testing purposes. By using the same dataset, tra-
jectories which are uncommon in the reference data will be
detected. As we will show, this is useful for finding several
types of erroneous behavior that arise from a simulation’s
poor handling of difficult crowd conditions or unusual lo-

cal circumstances. Pure outlier detection is not sufficient for
identifying all errors. For example, wide-spread and system-
atic problems in a simulation will not be labeled as erroneous
using pure outlier detection (e.g., a simulation where agents
all move too quickly).

To perform novelty detection, we use different data for
training and testing. By using the results from a simulation as
testing data and data from humans in a similar environment
as training data, we can detect instances where simulated
agents act inconstantly with human motion. Importantly, we
can perform novelty detection with simulated agents as the
training data and real trajectories as testing data. By swap-
ping training and testing data in this way, we are able to de-
tect behaviors performed by the real humans which are not
captured by the simulation method being examined.

The choice between outlier detection (same reference and
testing data) and novelty detection (different reference and
testing data) presents an important tradeoff. Outlier detec-
tion requires no special data and can be applied to any sim-
ulation, however it will fail to capture systematic errors in
a simulation. Novelty detection can find a wider range of
erroneous behaviors, though it requires the user to find ref-
erence data with similar characteristics to the scenario being
analyzed. Section 6 presents results using our framework for
both outlier and novelty detection.

3.1. Data and Notation

Our framework takes as input two sources of data: training
data which serve as a reference of “correct behavior" and
testing data in which outliers will be identified. In general,
we assume that the reference data provided by the user con-
tains mostly nominal behavior. This assumption allows us to
use unlabeled data, and avoids the need for a user annotating
behaviors into good and bad.

Each dataset is represented as a time-varying sequence of
positions, velocities and orientations for each agent in the
scene. This data is typically easy to extract from a simu-
lation. However, when working with human trajectories, it
is common to be presented with only (noisy) estimates of
individuals positions. In these cases, it is necessary to use
filtering methods, and finite difference analysis to infer an
individual’s velocities and orientations.

Trajectory Segmentation. Typically, issues in an agent’s
motion are localized to a small portion of its trajectory rather
than its entire path. To account for this, rather than analyzing
entire trajectories, trajectories can be split into smaller seg-
ments of equal temporal length. This allows for a finer analy-
sis of the simulations so that local abnormalities are detected
and pinpointed. In order not to miss anomalies spanning a
segmentation, overlapping segments are used (see Figure 3).

Data Representation. Each segment is represented by a
collection of metrics which characterize the agent’s state
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Figure 3: Segmentation. Trajectories of two interacting
agents are split into several overlapping segments.

along that segment (e.g. average speed, maximum curvature
or minimum distance to nearest neighbor). As discussed be-
low, the metrics used to describe a trajectory will define the
types of anomalous behavior being detected. Assuming a to-
tal of l metrics with each one denoted as m j, j ∈ [1, l], each
of the n possible segments in the training data is represented
as a vector:

si = [m1
(i),m2

(i), . . . ,ml
(i)]T , i ∈ [1,n] (1)

where the superscript denotes the segment and the sub-
script indicates the metric. The set of segment representa-
tions ST = {s1,s2, . . . ,sn} of the training data represents the
space of nominal behaviors and acts as a training database.

We can now formally specify anomaly detection as fol-
lows: Given a new testing segment out of a total of new
nt testing data st = {m1

(t),m2
(t), . . . ,ml

(t)}, t ∈ [1,nt ] (nt
is typically different to n), we seek to measure if st lies in
the space defined by the nominal data ST . Typically, nor-
malization based on the combined training and testing data
is applied for each of the dimensions of the data to account
for scale differences in the different metrics.

3.2. Comparison Metrics

When training an anomaly detection method, a user must
specify what metric(s) to use for the evaluation. Following
the approach presented in [KSA∗09], we split our metric into
two parts: a measure and an operator. A measure seeks to
characterize the state of an agent at a given timestep (exam-
ples include speed, acceleration or number of neighbors). An
operator then aggregates the effect of a measure over many
time steps (e.g., average, min, or max). Combining an op-
erator with a measure will provide a complete metric, for
example two paths may be compared based on their average
speed or maximum acceleration.

To assist users in choosing metrics we broadly group our
difference measures into three categories: individual, inter-
personal, and group (Table 1). Individual similarity measures
are based on properties of each agent in isolation. Examples
include an agent’s speed, acceleration, displacement, curva-
ture, and other criteria that can be defined as a function of the
agent’s path over time. Interpersonal metrics seek to capture
an agent’s relationship to its neighboring agent. For example,
the average distance to an agent’s nearest neighbor may help

Similarity Measures Operators

Individual: Speed, Acceleration, Curva-
ture, Displacement

Average,
Standard
Deviation,
Minimum,
Maximum,
Sum

Inter-Personal: Nearest Neighbor Dis-
tance, Nearest Neighbor Speed Diff

Group: Number of Neighbors, Neigh-
borhood Speed

Table 1: Sample Metrics. Combining a measure with an op-
erator will produce a metric over a trajectory segment. A full
listing of operators and measures is given in the Appendix.

reveal outliers in density. Finally, group metrics capture how
agents behavior compares to their nearby neighbors. Exam-
ples include the difference between an agent’s velocity and
the velocity of all its nearby neighbors, which can capture
important aspects of social interactions between individuals.
A partial list of measures and operators implemented is given
in Table 1 (see Appendix A for a more complete list).

3.3. Outlier Detection Methods

Once the simulation data has been divided into segments,
reference data has been found and comparison metric(s)
have been chosen, outliers can then be detected automati-
cally using state of the art machine learning techniques. We
have integrated several different anomaly detection methods
within our framework including One Class SVMs, k-NN,
and k-LPE each of which is described briefly below.

One Class SVM. One Class Support Vector Machines
(SVM) [SWS∗00] extend SVMs for classification problems.
Here, everything in the input dataset is considered to be nom-
inal and an “optimal” hyperplane is calculated to divide the
space into two regions; nominal and anomalous. SVM-based
approaches provide a binary classification of each new data-
point as nominal or anomalous.

k-NN Based Approaches. The simplest approach to
anomaly detection is comparing the testing sample st to its
closest neighbors in the training dataset ST . An anomaly
score for st is defined as a function of the distances to the
k nearest neighbors with values above a threshold indicat-
ing an anomalous sample. This threshold value can either be
user defined or estimated from the nominal data. The choice
of k plays a significant role on the results; a small value ex-
amines a very small subset of the data whereas a very large
number could lead to over-training. We implemented an ap-
proach based on Hsao et al. [HXCH12] who suggest that a
good balance can be found by iterating over k until the graph
of k nearest neighbors (k-NN graph) is fully connected (or
within a user defined threshold in case of clustered data).

k-LPE. Localized p-value Estimation (k-LPE) is a recently
proposed method [ZS09] for anomaly detection based on k-
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Nearest Neighbour Graphs (kNNG). Each point si on the
graph (of the n training segments ST ), is assigned a score
value RS(si) ∈ [0,1] based on the distances to their k-nearest
neighbors. Assuming the k-nearest neighbors of si is the or-
dered list of points kNN(si) = {si,1,si,2, . . . ,si,k}, the score
for each point is then typically defined as the distance to the
farthest nearest neighbor si,k:

RS(si) = d(si,si,k) =

√√√√ l

∑
j=1

(m j(i)−m j(k))2 (2)

Given a new test point st , an anomaly score pK(st) is esti-
mated based on the following formula of Zhao et al. [ZS09]:

pK(st) =
1
n

n

∑
i=1

I{RS(st )≤RS(si)} (3)

where I{.} is the indicator function, i.e., it returns 1 if the
condition is valid and 0 otherwise. Intuitively, Equation (3)
can be thought of as indicating what portion of existing
points on the kNNG of the training data have worse score
than the testing point. Or more simply, how much of the
training data is more anomalous than a given testing sample.
A pre-defined significance level α (e.g., α = .05) controls
the anomaly detection – a point is considered anomalous if
pK(st) ≤ α. Importantly, α is exactly the false alarm rate
providing an easy to interpret threshold value.

3.4. Analysis

Visualization. All three outlier detection methods can pro-
vide comparable outlier results with carefully tuned thresh-
old selections. However, we recommend using k-LPE over
SVM or k-NN, partly, because of the guarantee on false
alarm rates. Moreover, each trajectory segment will be as-
signed a continuous value between 0 and 1, corresponding
to how anomalous it is. This allows the use of k-LPE scores
in visualization by mapping the scores to a blue-to-red color
ramp (see Section 5.1 for further discussion).

Multiple Criteria. When using multiple metrics, the dis-
tance formula of Equation (2) assumes each metric is
weighted equally. In many cases this is undesirable, as
agents which are very outlying in one metric but normal in
another metric are still outliers. Consider, for example, an
agent who takes a very curvy, circuitous path, but walks at a
nominal speed; weighting the metrics evenly will mask the
fact that the path is an extreme outlier. A popular solution
to this issue is known as scalarization, which seeks to find a
convex combination of metrics which “best" predict anoma-
lies. Finding these weights is typically a very slow proce-
dure which is exponential to the number of criteria (e.g., if
grid search is used), and requires manually labeled data for
training purposes. Because these options are unsatisfying, in
the next section we will explore methods to detect outliers
which account for multiple criteria in a principled fashion.

4. Real-Time Multiple-Criteria Evaluation

Often, multiple comparison metrics may be needed to cap-
ture a wider range of atypical behaviors. However, most
anomaly detection approaches do not naturally handle multi
criteria. As discussed above, the typical solution of taking
a linear combination of multiple similarity measures (i.e.,
weighted average of the metrics) has important limitations.
More importantly though, there exists outliers which no lin-
ear combination of metrics can detect! Consider, for exam-
ple, the metrics of speed and neighbor distance. Assuming
that training data comes from an outdoor sidewalk, a simu-
lated agent which moves with near zero speed will not seem
anomalous because real people frequently stop to talk to
friends or slow down to avoid congestion. Likewise, a sim-
ulated agent who has no nearby neighbors is unlikely to be
anomalous as people often walk alone. However, an agent
who is simultaneously still and not near anyone is anoma-
lous; outside of talking to someone or resolving a collision,
it is unusual to stop walking in the middle of a sidewalk.
Finding these types of outliers requires a method which cap-
tures the dependence of one metric on another.

The concept of Pareto optimality provides a principled
way of accounting for multiple criteria simultaneously. In
this section, we briefly recap the state-of-the-art in Pareto
optimality analysis and discuss modifications necessary to
allow the fast data analysis necessary to support a user-in-
the-loop workflow.

4.1. Pareto Optimality and Dyads

Pareto Optimality is the typical approach for defining op-
timality in a problem with multiple conflicting criteria. An
item is considered Pareto optimal if there is no other item
that is better or equal in all the defined criteria. The Pareto
Depth Analysis (PDA) [HXCH12] method exploits the con-
cept of Pareto Optimality as follows:

First, relationships between all the training segments are
encoded using dyads, a vector representation of differences
for each metric. More formally, a dyad Di, j ∈ Rl between
segments si and s j is defined as:

Di, j = [d1(i, j),d2(i, j), . . . ,dl(i, j)]T (4)

where l is the number of metrics and dm(i, j), m ∈ [1, l], in-
dicates the difference between segments i and j for metric m.
Here, dm(i, j) is typically absolute differences between the
segments for criteria m.

The set of all possible dyads between training segments
are calculated and stored; if there are N segments in a
dataset, a total of

(N
2
)

dyads are calculated – dyads be-
tween a segment and itself are not calculated. The set of all
dyads D encodes the differences between each possible pair
of training segments. For example, Figure 4b shows dyads
plotted for the real-world pedestrian dataset in Figure 4a
computed using two metrics; average distance to nearest
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(a) (b)

Figure 4: (a) The Zara dataset (top) where two apparent outliers with usual behavior have been highlighted in red (bottom). (b)
The dyads from these pedestrians are shown based on the criteria of average speed and nearest neighbor distance. The first 10
Pareto fronts are shown as blue lines. The dyads from the apparent outlying pedestrians all lie in deep Pareto fronts (top right
of the plot) so the agents would be identified as outliers.

neighbor and average speed (d1(i, j) = |∆(E(nndist))| and
d2(i, j) = |∆(E(speed))| respectively).

After computing dyads, Pareto fronts are found. These are
sets of dyads which are Pareto-optimal (i.e., any dyad on the
front which is better in one metric is worse in some other
metric). These dyads are then removed and the next most
Pareto-optimal dyads are taken to form the next Pareto front.
This process continues iteratively until every dyad lies on a
Pareto front. For each one of these fronts, a rank is given
based on the order they are found; i.e., the first Pareto front
has rank 1, the second 2 and so on. The lines in Figure 4b
indicate the first 10 Pareto fronts for the aforementioned ex-
ample. Dyads on low rank fronts correspond to trajectory
segments which are very similar to other segments, and are
considered nominal. Dyads on high rank fronts indicate that
the segments are very different in one measure with respect
to the other measure (e.g., an unusual path curvature given
the speed), and these paths are considered outliers.

To illustrate the concept, in Figure 4a(bottom) we man-
ually highlight in red two agents with visually apparent
anomalous behavior. As can be seen in the supplemental
video, these agents stand still or watch the building without
talking to others or moving for an unusually long time. The
dyads corresponding to these apparent outliers are shown in
Figure 4b as large red circles. All of these dyads have a high
Pareto front depth, and the trajectories are therefore consid-
ered outliers by the PDA method.

In general, to evaluate a new segment as a potential out-
lier, the k closest matching training samples in each of the
metrics separately are selected (k can be different for each
metric). Dyads between the test sample and these k neigh-
boring samples are calculated and the first Pareto Front that
dominates every one of these dyads is found. The average

Pareto front depth of all the dyads (normalized from 0 to 1)
serves as an evaluation of how anomalous the segment is,
and can also be used for coloring heatmaps or determining
an anomaly threshold. Typically, values for k are calculated
using the kNNG approach described in Section 3.3 instead
of being manually defined.

4.2. Interactive PDA

As described in [HXCH12] the PDA method is too slow to
be used in interactive analysis. The dyads and Pareto fronts
must be recomputed each time a new set of metrics is chosen
which can be a time consuming process preventing quick
user interactions. We introduce two modifications to adapt
the PDA computation for interactive analysis: randomized
PDA and criteria dimensionality reduction.

Randomized PDA. To reduce computation cost, we con-
struct Pareto fronts over a randomly chosen subset of the
dyads. Crucially, the sampling process is performed on the
dyads and not the training samples themselves. This process
ensures that data from all the samples are used to construct
the Pareto fronts. Our proposed method is especially effec-
tive for very large datasets with many dyads, as is the typ-
ical case when dividing large datasets into many segments.
For the large pedestrian dataset, with 204 trajectories (Ta-
ble 2) and 4 evaluation criteria, even a large reduction in
sampled dyads (up to 90%) had a small affect on the root
mean squared error (normalized error of < 5%). See Ap-
pendix B for further analysis.

Criteria Dimensionality Reduction. When using a long
simulation as both training and testing data (i.e., pure outlier
detection), the datasets being tested can become very large,
greatly increasing the computation time. This problem can
be greatly exacerbated if a user wants to find outliers along
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Figure 5: Distributions of anomaly scores. Using PCA to
reduce the dimensionality from 10 to 4 criteria, finds similar
outliers while speeding up computation. The red bars indi-
cate the two idle agents in Figure 4a.

any of the possible evaluation criteria and so chooses dozens
of different metrics to analyze simultaneously; the process of
finding the appropriate Pareto front for each testing segment
is linear to the number of metrics. In these cases, even ran-
domized PDA can take several minutes to evaluate paths. We
propose using dimensionality reduction techniques such as
Principle Component Analysis (PCA) to solve these issues.
Because the testing and training data will be the same, PCA
will find a reduced space which represents well both the vari-
ation in the training data and the errors in testing data. For
novelty detection tasks, this technique may not be safe if the
testing and training data vary significantly.

We can illustrate the effect of reducing dimensions in
PDA analysis by comparing the outliers found in Figure 4
using 10 different individual and group metrics to those
found using the top 4 PCA components. In this way, we
can automatically derive new representative criteria without
needing any prior knowledge of the scenario being tested.
The results for this scenario are shown in Figure 5. The two
individuals with anomalous trajectories previously identified
are correctly labeled as outliers without any further manual
intervention. Overall, randomization along with PCA-based
dimensionality reduction lead to over an order of magni-
tude reduction in computation cost, while calculating simi-
lar scores and more importantly similar outliers. Section 5.3
gives a detailed performance comparison, while additional
quantitative results are presented in Appendix B.

Pseudocode for this PDA-based, multi-criteria outlier de-
tection technique, including our modifications, is given in
Algorithm 1. The algorithm has two phases, training and
testing, which can be performed separately. It takes as input
the number of metrics l, the requested dimensionality d ≤ l
(which can be given as a variance percentage), the percent-
age of dyads to keep 0 < p ≤ 1 and a threshold value σ for
anomaly detection. B are the eigenvectors of the PCA space.

Algorithm 1 Randomized PDA on PCA reduced data

Training
STr← TrainingSegments()
S′Tr,B← PCA(STr,d)
D← GenerateDyads(S′Tr)
Dr← RandomSelection(D, p)
PF← GenerateParetoFronts(Dr)

Testing
STe← TestingSegments()
S′Te← BTSTe
for st ∈ S′Te do

nb← [] {Neighbors for each criteria}
for c = 1→ d do

nbc← kc nearest neighbors of st ∈ S′Tr
end for
Create new dyads Dn between st and samples in nb
for Di ∈ Dn do

ei← Depth(Dn) {Pareto depth of neighbor i}
end for
score(st)← 1

s ∑
s
i=1 ei

st is anomalous iff score(st)≥ σ

end for

5. Framework Usage

We implemented our proposed crowd analysis framework in
Python in order to evaluate its applicability in various sce-
narios. The following reference data was used (after apply-
ing a Butterworth filter to remove noise and hip sways):

Bottleneck: Group of automatically tracked participants
navigating through a 2.5m wide bottleneck [SPS∗09].
Zara: Sparse crowd of manually tracked people interacting
at a commercial street [LCL07] (Figure 4a).
Assassin’s Creed: Non-player characters (NPCs) were
manually tracked from in game footage [Ubi09] (Figure 7).

5.1. Visual Evaluation

Our Python front-end allows the user to analyze crowd sim-
ulations and detect erroneous behaviors. After indicating the
training/testing data and comparison metrics, several differ-
ent visualizations are given to the user. By coloring data
based on the anomaly score of a trajectory segment on a con-
tinuous scale ranging from blue (nominal behavior) to red
(highly anomalous behavior), histograms can indicate the
distribution of outliers (Figure 5), heatmaps can show where
these behaviors happen (Figure 6), and 2D and 3D realtime
animations can highlight erroneous behavior over time by
changing the agents’ colors. We can also display each tra-
jectory segment as a color-coded point in 2D space (using
dimensionality reduction like PCA) to allow users to quickly
browse through trajectories/segments grouped by the sim-
ilarity of their metrics. Several example visualizations are
given in Figure 1 and Appendix C.
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(a) τ = 1s (b) τ = 10s

Figure 6: Parameter Tuning. Adjusting the time horizon,
τ, over which agents can anticipate in ORCA changes the
number of outliers. Here, with a small time horizon (τ = 1s)
agents react to obstacles too late, and have unrealistically
straight paths. Larger time horizons results in more reactive
agents that match the data better (less outliers).

5.2. Improving Crowd Simulations

Our framework can improve existing crowd simulation sys-
tems by assisting users in tuning simulation parameters. By
using our front-end, different simulation outputs from dif-
ferent parameters can be quickly analyzed for outliers with
respect to different evaluation metrics. This interactive use
allows us to quickly minimize the number of anomalous tra-
jectories/segments. In addition, such a user-in-the-loop pa-
rameter exploration can be combined with automated global
optimization techniques for parameter tuning [WGO∗14].

Figure 6 gives an example of our framework being cou-
pled with parameter optimization to improve a crowd sim-
ulation. Here, we chose curvature and distance to near-
est neighbor as evaluation metrics and used the Bottleneck
dataset to evaluate trajectories simulated with ORCA [vd-
BGLM11]. We then modified the anticipation time horizon
of the agents, while keeping the rest of the simulation pa-
rameters fixed. The time horizon parameter indicates how
far in advance agents react to collisions. With too small of
a time horizon, agents either failed to react to close neigh-
bors (paths near others were too straight) or reacted too late
to walls (paths near obstacles were too curved). Our visual-
ization quickly highlights both types of outliers (Figure 6a).
Using a larger time horizon alleviates both problems and re-
sults in fewer outliers (Figure 6b).

5.3. Performance

Given the interactive nature of our crowd analysis frame-
work, quick responsiveness to a user’s requests is a very
important feature. Overall, single-criteria anomaly detection
can be performed very fast using k-LPE. When using PDA
for multiple criteria, our system can run at interactive rates
through the introduction of the randomized PDA, and the us-
age of PCA for dimensionality reduction. Table 2 highlights

Total Time (s)
Dataset # Samples PDA rPDA rPDA + PCA
Assassin’s 35 2.4 0.9 0.2
Bottleneck 176 353.9 78.7 8.3
Zara 204 698.3 151.6 11.2

Table 2: Performance. Comparison between PDA, random-
ized PDA (rPDA), and rPDA with PCA (2 components) us-
ing 6 metrics. The randomized methods use 40% of the input
dyads. Overall, using both rPDA and PCA leads to a signifi-
cant performance gain without compromising quality.

the runtime performance of our system running pure outlier
detection on three datasets using all group similarity metrics.

Overall, the running time scales almost linearly with the
number of constructed pareto fronts. As can be seen from
the Table, randomized dyad selection results in about a 4.5x
speedup, and incorporating PCA brings the total runtime of
Algorithm 1 to be more than an order of magnitude faster
than PDA alone. All results were obtained on an Intel 3.4
GHz Core i5 processor (on a single thread).

6. Simulation Analysis

We applied our tool to all three datasets described in Sec-
tion 5 to demonstrate the variety of different forms of analy-
sis which can be performed in the proposed framework.

6.1. Single Criteria Analysis

We used the Bottleneck as reference data to analyze the qual-
ity of three crowd simulation algorithms: the social force
model proposed in [HFV00], the velocity-based model pre-
sented in [POO∗09], and an anticipatory model tuned to
closely match the input training data following an approach
similar to [WGO∗14]. For each method, we created a 50
agent simulation matching closely the conditions of the ref-
erence data.

For each simulation we computed the corresponding en-
tropy metric scores [GvdBL∗12]. As can be seen in the ac-
companying video, the social force model has the lowest per-
formance, as the agents do not match well the behavior of the
real humans. However, both the velocity-based simulation
and the tuned one have similar overall flows to the real data,
and receive similar entropy scores. Our framework, compli-
ments the entropy score by allowing users to further inves-
tigate individual behaviors (rather than aggregate simulation
results). Here, we can detect agents that exhibit various er-
roneous behaviors by some criteria even though the overall
flow matches well. The tuned model, for example, has less
nearest neighbor outliers than the velocity-based model (k-
LPE on segments with α = .05). Further examples are given
in the accompanying video.
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(a) (b) (c) (d)

Figure 7: Assassin’s Creed. Example outlier detected in a non-playing character in the game Assassin’s Creed (red circle). The
outlying character can be seen to spin around quickly as it tries to avoid the upcoming collision too late. This outlier was found
by applying PDA on path segments after performing principal component analysis on 14 evaluation criteria.

(a) [KO12] model (b) ORCA model

Figure 8: Missing Social Features. Simulations that account
for small groups show different outliers than those without.
The corresponding heatmaps were obtained by applying ran-
domized PDA on speed and NN distance (threshold = 0.4).

6.2. Multi-criteria Analysis

Multi-criteria Novelty Detection. In this experiment, we
used the ORCA framework [vdBGLM11] to simulate 60
agents wandering on a 2D plane. To detect behaviors that
are missing from the simulated agents, as compared to real
pedestrians, we used the simulated trajectories as training
data and the trajectories of the Zara dataset as testing. By
performing anomaly detection on single criteria indepen-
dently, a number of missing behaviors can be detected. Us-
ing, for example, average speed as an evaluation metric, both
those that stand still to chat or run very fast are flagged as
outliers. In addition, using the average distance to the nearest
neighbor as an evaluation metric, all pedestrians that walk in
groups are detected as outliers, since the ORCA model does
not account for such groups. However, only the combination
of both evaluation criteria using our proposed randomized
PDA implementation allowed us to consistently capture both
missing behaviors. To validate the accuracy of the random-
ized PDA, we replaced the ORCA simulation with a simu-
lation that accounts for the local behavior of small pedes-
trian groups [KO12]. As expected, only pedestrian that have
anomalous speed are detected as outliers (see Figure 8).

Multi-criteria Outlier Detection. In this experiment, we

used the Assassin’s Creed dataset both for training and test-
ing purposes in order to perform multi-criteria outlier detec-
tion and analyze the quality of the manually tracked NPCs.
The NPCs global motions are governed by waypoints along
the medial axis of the environment, whereas a reactive tech-
nique is used to resolve local collisions between them. As
such, the characters typically have to be very close to react
to each other, which can result in undesired behaviors, such
as backward motions and unwarranted oscillations (see out-
liers in Figure 7). Both the average and standard deviation
of all individual measures were used in the analysis. Using
PCA to reduce the 14 evaluation metrics down to 2 dimen-
sions resulted in a 14x speedup without compromising the
quality of the detected outliers (see Appendix B for details).

7. Limitations and Future Work

We have introduced a novel framework for visual crowd
analysis. By formulating the analysis problem as an out-
lier or novelty detection problem, our framework can auto-
matically detect potential erroneous behaviors in a simula-
tion given a collection of arbitrary, user-selection evaluation
metrics. We have also shown how to use randomization and
dimensionality reduction in conjunction with Pareto depth
analysis in order to robustly account for multiple, simulta-
neous evaluation metrics while still providing good respon-
siveness necessary for user-in-the-loop iterations.

Our proposed framework has some limitations. For one,
PDA-based dimensionality reduction can only be reliably
applied when testing and training data are very similar. Ad-
ditionally, performing novelty detection relies on having ex-
ternal representative data, which may not always be avail-
able. We believe that both of these issues can be addressed
to some extent by running extensive user studies of many
different simulations to develop strong priors on visually ac-
ceptable motion even in the absence of training data.

Beyond addressing these limitations, we would like to im-
prove the general speed and robustness of our implemen-
tation. For example, enlarging the input training dataset by
blending between samples following an approach similar to
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Ju et al. [JCP∗10] can reduce the number false-positive out-
liers. Additionally, some aspects of PDA computation can
be efficiently parallelized suggesting that a GPU implemen-
tation may be effective. Such accelerations may allow inter-
active analysis of very large crowds, consisting of thousands
of agents (see, e.g., [NGCL09]) which are important in some
applications.
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