
Virtual Environment Navigation Assisted by Neural Networks
Georgios Kyrlitsias*

University of Cyprus
Department of Computer

Sciences

Amyr Borges Fortes Neto†

University of Cyprus
Department of Computer

Sciences

Panayiotis Charalambous‡

The Cyprus Insitute, CaSToRC Center

Marios Avraamides§

University of Cyprus,
Department of Psychology

Silversky3D VRT Ltd.

Yiorgos Chrysanthou¶

University of Cyprus,
Department of Computer

Sciences
RISE Research Centre

ABSTRACT

Applications using Virtual Environments (VE) are becoming increas-
ingly popular due to greater computational capacity and improve-
ments in graphics processing units and tracking devices. As a result,
much research has been carried out on various aspects of VEs, in-
cluding the input devices that can be used to navigate scenes when
physical movement is not permitted. Here, we test whether imple-
menting a neural network to assist users avoid collisions with virtual
obstacles, can benefit the navigation experience. Our hypothesis was
that users with no gaming experience in particular, would appreciate
the assistance of the neural network in navigation. However, our
pilot data suggest the exact opposite: participants with video game
experience liked the assisted navigation more than participants with
no video game experience.

Index Terms: Human-automation navigation—Assisted
navigation—Newral networks—Autonomous navigation;

1 INTRODUCTION

Until recently, interactive virtual environments (VE) were popular
only in specific domains such as that of Computer Games. How-
ever, the improved performance and rendering capabilities of many
consumer level devices (e.g., mobile devices), coupled with lower
hardware costs, have made VEs popular in applications that go be-
yond gaming. With the popularization of VEs in devices, an appeal
for new applications has emerged. Applications now range from
architecture portfolios to applications for clinical interventions and
cognitive training. A common theme in many of these VE applica-
tions is that the user must navigate the depicted environment.

In this paper, we focus on solutions that aim to help users who
are not acquainted with traditional controllers such as joysticks or
game pads. Specifically, we test a neural networks (NN)-assisted
point and click navigation system that allows users to virtually ex-
plore buildings and houses, such as the ones found in architectural
portfolios. The NN is responsible to help the user navigate towards
the intended goal while at the same time avoiding collisions with
obstacles such as furniture, walls and pillars. The idea is that such
assisted navigation would improve the user’s experience, by remov-
ing the need to carry out demanding obstacle avoidance. Although
our system was initially designed for autonomous character naviga-
tion, in the pilot study we carried out we expected would ease the
navigation experience of users initiating the movement themselves.

*e-mail: gkyrli01@cs.ucy.ac.cy
†e-mail: aborge01@cs.ucy.ac.cy
‡e-mail: ps.charalambous@cyi.ac.cy
§e-mail: mariosav@ucy.ac.cy
¶e-mail: yiorgos@cs.ucy.ac.cy

The hypothesis explored was that users with no prior experience in
navigating VEs (i.e., non-gamers) would find it easier to navigate
with NN assistance than without it.

Although there are other algorithms for local navigation, such
as ORCA [16] and RVO [14], we propose the use of NNs in this
approach to develop a framework that is able to learn from human
expertise. The data collected for the NN training is generated by a
human user navigating the virtual environment. With this approach,
we are able learn from human expertise, and apply the learned
pattern for user assistance. This framework, applied here for virtual
navigation, could be further extended for other specific tasks.

In Section 2 we discuss related work in neural network navigation
in virtual environments and robots. In Section 3 we describe our
method. Section 3.1 presents the NN topology used for this work,
Section 3.2 describes the training process and Section 3.3 explains
how we generated data for the training of the neural network. Section
4 presents the scenario used for the studies performed. In Section 5
we describe the pilot study we performed to evaluate our work and
in Section 6 the results we obtained. Finally, Section 7 discusses
possible new directions for the current research.

2 RELATED WORK

Autonomous, collision-free navigation for virtual agents is a problem
that has challenged scientists for a long time. Crowd simulation
researchers have proposed many approaches, from the seminal work
by Reynolds on flocks and herds [13], to Helbing’s Social Forces [3],
to hierarchical and ruled approaches [2, 9] and geometrical and
psychological approaches such as HiDAC [11], ORCA [16] and
recently RVO [14]. All of these algorithms rely on geometric and
empirical approaches.

Recently, many methods relying on Neural Networks and Deep
Learning have been introduced to navigate both virtual agents and
robots in the real world. For the virtual agents, some approaches
use NNs to autonomously navigate dynamic VE in a collision-free
manner [15], [4], [7]. Also, relying on sensor inputs, the navigation
of land vehicles such as ALVINN [12] and robots [10], [6], [8], [5]
has been described in the literature. Finally and most related to this
work, NN have already been used for navigation assistance purposes
in a human-automation collaboration framework [1].

Although our model was originally designed for autonomous
agent navigation in dynamically changing environments, in the
present research we test its suitability for assisting user navigation in
VE. Specifically, we test whether it would make VE navigation easier
for users who are not experts with navigating VEs using traditional
controllers such as joysticks or game pads.

3 METHODOLOGY

This section starts by presenting the methodology we used to gener-
ate the data for training the NN. Then we describe the topology of
the NN used in our experiment and training algorithms. As already
mentioned, although here we use this NN to assist user navigation in



Figure 1: Neural networks and their role in agents behaviour.

a VE, this topology was first conceived for autonomous navigation
of virtual agents.

3.1 The Neural Networks Architecture

In our approach we use 3 neural networks to solve the problem
of collision avoidance as shown in Figure 1. We use one NN for
determining the absolute value of steering angle the agent should use,
one NN for the sign of the steering applied (i.e., negative or positive
for left or right respectively) and one NN for deciding acceleration
(one) or deceleration (zero).

3.1.1 Absolute Steering NN Topology

We used 3 hidden layers that have 300 neurons, 200 neurons and 100
neurons respectively with dropout layers between each of them and
one between the last hidden layer and the output layer. The dropout
rates are 0.8, 0.6, and 0.5 respectively. The output layer has one
node for the steering value. The three hidden layers use the RELU
activation function and the output layer uses the sigmoid function.
This output is in the [0,1] range; we scale it back and combine it
with the sign predicted by the other NN to get the correct rotation.

3.1.2 Acceleration and Sign NNs Topology

Both decisions for acceleration and the sign of the steering value
use the same topology. For this aspect of our system we used 2
hidden layers that have 400 and 200 nodes respectively with dropout
layers between them with 0.6 and 0.5 dropout rates respectively.
The output has one node for the respective prediction. The hidden
layers use the RELU activation function and the output uses sigmoid
activation function.

3.2 Training Algorithms

For both the absolute steering and the acceleration sign NNs, we
decided empirically to use the ADAM optimization algorithm with
default parameters provided from Keras library. For our loss func-
tions we used Mean Squared Error for the absolute steering NN and
Binary Cross Entropy for the acceleration sign NN.

3.3 Data generation

A crucial aspect of training neural networks is having good data.
With that in mind, data was created using human-computer interac-
tion. A dynamic environment was created where the user controls
a character. The user aims to reach a goal avoiding obstacles that
spawn in front and around him/her while the environment gets more
and more difficult over time. The data describing these dynamics
are then recorded and used for NN training.

During this process, 331 features were extracted and associated
with 2 outputs. The features consists of the combination of 3 distance
vectors, each of which measuring the distance from the agent to
the closest obstacle in various directions. Every measurement is a
straight line in a given angle with maximum distance of 6 meters.
There are 36 angular intervals (directions) within a 180o ahead of
the agent as depicted in Figure 2 for each one of the three distance
vectors. The first of the three vectors measures angles relative to
agent’s orientation shown in Figure 2(a). This way it detects the
obstacles in the agent’s path/moving direction. This results in a
vector with 36 floating point values that represents the distance in
meters to the closest object in that direction in an [0,6] interval.

The second vector, depicted in Figure 2(b), measures distances
in a similar manner; the only difference is that while the first vector
looks in front of the agent according to agent’s orientation, the
second vector looks towards the goal direction. In total, 72 features
are measured by these two vectors.

Like the second vector, the third vector measures the same angles,
computed relative to the goal direction from the agent’s current
position analogue to the second vector, as depicted in Figure 2(c).
Thus, it detects obstacles that are present between the agent and its
desired goal. Notably, this third vector is binary. That is, it obtains
the value TRUE, if there is an obstacle in a given direction and
FALSE if not. Furthermore, since obstacles that are not straight in
the path between the agent and the goal do not impair the agent to
reach the goal, this third semicircle (or ellipse) is narrowed according
to Equation 1. That is, if there is a hit, the coordinates given by
(x,y) must satisfy the conditions in Equation 1 to be a valid hit.
The width of the ellipse is given by W and is arbitrarily given a
value that is slightly greater than the agent’s diameter. Some values
were empirically tested for W , without much difference across tests.
So, for an agent diameter of 0.123 meters, we choose to apply
W = 0.15m. The distance D represents the scalar distance from the
agent to the goal.

f (x,y) =
{

1 if x2

W 2 +
y2

D2 ≤ 1
0 otherwise.

. (1)

The bit-vector mentioned above helps the NN understand that it
can follow its goal even though there are imminent collisions behind
the goal or around the goal but not between the agent and the goal,
i.e., the path to the goal is clear. Good results can be obtained without
the bit-vector as well but more training data are required. With this
third vector, we have a total of 108 features. On top of that, we
measure the scalar distance from the agent to the goal, considering a
maximum distance of 8 meters, beyond which the agent is blind. We
include distance to goal in our data because people have different
behaviour when they are near or far away from their goal. Besides
the distance, the angle between the agent orientation and the goal
direction is also measured, helping the NN to orient itself towards
the goal, summing up to 110 features. We keep track of all those
features for the current frame and the past two frames (first and
second derivatives), summing a total of 330 features. Finally, the
last feature is TRUE if the goal is directly visible by the agent at any
angle, and FALSE if the goal is not visible. This is the last of the
331 features acquired to train the NN.

For our output we decided to take the users module of steering
provided by the mouse X position on the screen resulting to values



Figure 2: Measurement of obstacles’ distances to generate the fea-
tures.

Figure 3: Screen shot of the experiments used for evaluate the usabil-
ity of our navigation assistant.

[−0.53,0.53], −0.53 meaning left, ZERO meaning neutral (straight
ahead) and 0.53 meaning right. We also have one discrete output
indicating whether the user is accelerating (zero) or decelerating
(one). All features (inputs and outputs) were collected for 75 thou-
sand frames of user-driven steering, resulting in around 120MB of
training data.

3.4 Technical details

It is very important to note some details of the implementation. Our
data was generated with constant 50fps. During preprocessing we
generated two outputs from the user steering inputs. The first one is
the absolute value of steering which was normalized afterwards to
[0,1] and the second one is the sign of the value. These two outputs
were used with their respective NN for training. When computing
the NN predictions, we scale back the predicted value of absolute
steering and combine it with the predicted sign, using a 0.5 threshold.
The resulting steering value should be multiplied by a constant value
of 300. Moreover, the speed of an agent should be 0 ≤ speed ≤ 4.
Another important aspect of the data used is that the angle to the
goal should be thresholded as −90 ≤ angle ≤ 90 and the resulting
angle is taken in consideration to build the goal dependent features.

4 SCENARIO CONSTRUCTION

To evaluate the usability of our NN in assisting user navigation in a
virtual environment, we used a virtual model of the RISE Research
Centre headquarters (http://www.rise.org.cy). Figure 3 shows the
avatar navigating the virtual environment controlled by the user and
assisted by our NN.

The camera rotates along the vertical axis using the mouse X axis
(left and right). While the user presses the left mouse button the
avatar will moves and stops when the button is released. Notably, it
only moves to the direction of the camera, and if an obstacle is in the
way, the avatar tries to dodge it according to the NN predictions. This
action does not change the camera direction, although it changes the
avatar’s orientation and trajectory.

Figure 4: Trajectories of the participants during experiments with (left)
and without (right) the neural network assistance.

Table 1: Trajectories distances: average and standard deviation.

Average Std. Deviation

With NN 161.4582 23.4751
Without NN 152.3371 15.1463

5 MODEL EVALUATION

To evaluate the usability of our NN as an assistant to navigation,
we performed three runs in the described environment for each
participant. The first run was without the NN assistance, and was
meant as practice for the user, allowing her/him to get used to the
avatar movements and the task. This took about one minute and no
data were collected.

For the next two runs the participants were asked to navigate in
the virtual environment and reach a predefined sequence of goals.
The sequence was always the same for all participants. We defined
the goals in positions that required the participant to dodge couches,
tables, and pillars in the environment. One of those runs was per-
formed with the NN assistance, and the other run was performed
without the NN assistance. The order of those runs was counter-
balanced across participants. Example of trajectories are shown
in Figure 4, where the green dots represents the positions of the
predefined goals.

We ran 16 participants (8 females) in this task. After they carried
out the two trials, participants were asked to fill out a question-
naire in which they indicated how often they engage in playing
video/computer games on a scale from 1 to 5 (1=never, 5=more
than 10 hours per week). This allowed us to identify how familiar
participants were with controlling virtual characters in a VE. The
questionnaire also asked them to indicate how hard they thought
the navigation in each trial was on a scale from 1 to 5 (1=very
easy, 5=very hard). Finally, we asked the participants to comment
generally on the trials they carried out.

6 RESULTS OBTAINED

We performed a t-test to compare data for the two types of trial
(Table 2), although with a small sample and just two trials per
participant, we did not anticipate a reliable output. Indeed, although
there was no statistical difference in the usability difficulty across
the two types of trial, numerically the navigation with NN assistance
was rated as slightly more difficult than the navigations without
NN assistance. The average distance and standard deviation of
participants trajectories are shown in Table 1. It is possible to notice
that, in average, the participants travelled longer distances with the
NN-assistance than without it.

To take into account the potential mediating effect of familiarity
with VE navigation, we examined the difficulty scores separately for
participants with and without gaming experience. Descriptive statis-
tics are presented in Table 3. As evident from Table 3 the pattern
of results was different for participants with and without gaming
experience (although the differences were not statistically reliable
in an Analysis of Variance we carried out). While participants with



Table 2: T-Test analysis.

NN Nr. Mean SD SE

yes 16 2.125 1.025 0.256
no 16 1.938 0.854 0.213

Table 3: ANOVA analysis.

Play NN Mean Std. Error

Never yes 2.429 0.386
no 1.714 0.324

Play yes 1.889 0.340
no 2.111 0.286

gaming experience found it easier to navigate with the NN than with-
out, the opposite was the case for those with no gaming experience.
Although an interesting finding, this contradicts our hypothesis that
people not familiar with using joysticks and game pads to move in
VEs would find the NN assistance beneficial. One possible explana-
tion for this, supported by comments provided by our participants, is
that these participants find the NN assistance as interfering with their
control actions. In contrast, those participants who were familiar
with video games and virtual environments seemed to grasp more
quickly the role of the NN in the avatar movement and appreciate its
contribution.

It should be emphasized that the experiment performed here is
only a preliminary attempt to test the usability of the NN system.
With the input we received from the participants we can implement
improvements in the system (e.g., make the goals more distinguish-
able from the environment, include more obstacles) before we test
its usability again with more trials and participants. Perhaps making
navigation harder by adding further could make the NN assistance
more relevant. Alternatively, it could be that such assistance systems
are not suited beyond autonomous settings. Perhaps taking away
the sense of control from the users who are supposed to carry out
navigation themselves, increase than decreases the difficulty and
acceptability of the assistance. This hypothesis will be examined in
our future research.

7 FUTURE WORK

For future work we expect to improve the existing scenario and test
it with more participants and trials. We will add more obstacles
and friction so the avatar can get stuck on obstacles. We will also
examine the influence of participants’ sense of control and also test
a version in which the model does not have priority over the user
control. Finally, we intend to train our system with data acquired
from other expert users to examine the effect of different navigation
styles on the users’ experience.

ACKNOWLEDGMENTS

This project is partly funded by the European Unions Horizon 2020
research and innovation programme under grant agreement No.
739578.

This work was carried out during the tenure of an ERCIM Alain
Bensoussan Fellowship Programme.

REFERENCES

[1] T. Adamson, M. Oishi, H.-T. L. Chiang, and L. Tapia. Busy beeway:
A game for testing human-automation collaboration for navigation.
In Proceedings of the Tenth International Conference on Motion in
Games, MIG ’17, pp. 9:1–9:6. ACM, New York, NY, USA, 2017. doi:
10.1145/3136457.3136471

[2] A. de Lima Bicho, R. A. Rodrigues, S. R. Musse, C. R. Jung, M. Par-
avisi, and L. P. Magalhes. Simulating crowds based on a space col-
onization algorithm. Computers & Graphics, 36(2):70 – 79, 2012.
Virtual Reality in Brazil 2011. doi: 10.1016/j.cag.2011.12.004

[3] D. Helbing and P. Molnár. Social force model for pedestrian dynamics.
Phys. Rev. E, 51:4282–4286, May 1995. doi: 10.1103/PhysRevE.51.
4282

[4] J. Jaafar, E. McKenzie, and A. Smaill. A fuzzy action selection method
for virtual agent navigation in unknown virtual environments. In 2007
IEEE International Fuzzy Systems Conference, pp. 1–6, July 2007. doi:
10.1109/FUZZY.2007.4295541

[5] B. Ko, H.-J. Choi, C. Hong, J. H. Kim, O. C. Kwon, and C. D. Yoo. Neu-
ral network-based autonomous navigation for a homecare mobile robot.
In 2017 IEEE International Conference on Big Data and Smart Com-
puting (BigComp), pp. 403–406, Feb 2017. doi: 10.1109/BIGCOMP.
2017.7881744

[6] P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan. Towards
optimally decentralized multi-robot collision avoidance via deep rein-
forcement learning. CoRR, abs/1709.10082, 2017.

[7] P. Long, W. Liu, and J. Pan. Deep-learned collision avoidance policy
for distributed multi-agent navigation. CoRR, abs/1609.06838, 2016.

[8] C. Luo and S. X. Yang. A bioinspired neural network for real-time
concurrent map building and complete coverage robot navigation in
unknown environments. IEEE Transactions on Neural Networks,
19(7):1279–1298, July 2008. doi: 10.1109/TNN.2008.2000394

[9] S. R. Musse and D. Thalmann. Hierarchical model for real time simu-
lation of virtual human crowds. IEEE Transactions on Visualization
and Computer Graphics, 7(2):152–164, Apr 2001. doi: 10.1109/2945.
928167

[10] Y.-K. Na and S.-Y. Oh. Hybrid control for autonomous mobile robot
navigation using neural network based behavior modules and environ-
ment classification. Autonomous Robots, 15(2):193–206, Sep 2003.
doi: 10.1023/A:1025597227189

[11] N. Pelechano, J. M. Allbeck, and N. I. Badler. Controlling individ-
ual agents in high-density crowd simulation. In Proceedings of the
2007 ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion, SCA ’07, pp. 99–108. Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 2007.

[12] D. Pomerleau. Rapidly adapting artificial neural networks for au-
tonomous navigation. In R. P. Lippmann, J. E. Moody, and D. S.
Touretzky, eds., Advances in Neural Information Processing Systems 3,
pp. 429–435. Morgan-Kaufmann, 1991.

[13] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral
model. SIGGRAPH Comput. Graph., 21(4):25–34, Aug. 1987. doi: 10.
1145/37402.37406

[14] M. Rufli, J. Alonso-Mora, and R. Siegwart. Reciprocal collision
avoidance with motion continuity constraints. IEEE Transactions on
Robotics, 29(4):899–912, Aug 2013. doi: 10.1109/TRO.2013.2258733

[15] A.-H. Tan. Falcon: a fusion architecture for learning, cognition, and
navigation. In 2004 IEEE International Joint Conference on Neural
Networks (IEEE Cat. No.04CH37541), vol. 4, pp. 3297–3302 vol.4,
July 2004. doi: 10.1109/IJCNN.2004.1381208

[16] J. van den Berg, S. J. Guy, M. Lin, and D. Manocha. Reciprocal n-body
collision avoidance. In C. Pradalier, R. Siegwart, and G. Hirzinger,
eds., Robotics Research, pp. 3–19. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011.


	Introduction
	Related work
	Methodology
	The Neural Networks Architecture
	Absolute Steering NN Topology
	Acceleration and Sign NNs Topology

	Training Algorithms
	Data generation
	Technical details

	Scenario construction
	Model evaluation
	Results obtained
	Future work

