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Abstract

We present a data-driven method for the real-time synthesis of believable steering behaviors for virtual crowds.
The proposed method interlinks the input examples into a structure we call the Perception–Action Graph (PAG)
which can be used at run-time to efficiently synthesize believable virtual crowds. A virtual character’s state is
encoded using a temporal representation, the Temporal Perception Pattern (TPP). The graph nodes store groups
of similar TPPs whereas edges connecting the nodes store actions (trajectories) that were partially responsible for
the transformation between the TPPs. The proposed method is being tested on various scenarios using different
input data and compared against a nearest neighbors approach which is commonly employed in other data-driven
crowd simulation systems. The results show up to an order of magnitude speed-up with similar or better simulation
quality.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation—I.2.11 [Dis-
tributed Artificial Intelligence]: Multiagent systems—

1. Introduction

Virtual crowds are important in a variety of applications
such as computer games, movies, training simulations and
safety modeling. Increasing processing power due to mul-
ticore architectures, improved clock speeds and highly pro-
grammable Graphics Processing Units (GPUs), enable de-
signers and programmers to add multitudes of virtual char-
acters in real-time applications. As the real-time rendering
of the characters is becoming more and more realistic, there
is a considerable gap between the rendering appearance and
the simulated behavior of crowds. People are accustomed to
real people in their everyday lives and therefore can easily
differentiate between a virtual human and a real one from
their behavior patterns, even though virtual humans can be
modeled and rendered realistically.

Numerous crowd simulation algorithms have been pro-
posed over the last few years. These algorithms can be di-
vided into two general categories: macroscopic, that con-
sider the simulation of the crowd as a whole and are mostly
interested in a global view of the crowd, and microscopic in
which global crowd phenomena emerge by simulating each
individual virtual person’s behavior separately. One of the

most common forms of the microscopic approach models
the virtual humans as agents and their behavior is defined by
a set of rules. Such an agent-based system can retain charac-
ter variability as seen in a real crowd while at the same time
provide the ability to control the agents individually through
personalized higher-level decision making.

Specifying the rules that govern agent behaviors is a very
laborious and demanding task. Data-driven methods avoid
this overhead by following rules indirectly embedded in the
real crowd data. Such data is usually extracted from videos
in which the people’s trajectories are tracked and processed.
Several crowd datasets already exist freely available on the
Internet, while with the rapid progress in Computer Vision
they become increasingly easier to generate. Despite the at-
tractiveness of data-driven techniques, they do carry a much
higher computational cost, at simulation time, compared to
traditional rule-based ones. The process of querying a typ-
ically high dimensional example database and forming the
actions for all the agents at every simulation step is costly
even if efficient acceleration structures are employed. Addi-
tionally, most of these algorithms do not try to enforce tem-
poral consistency between steps.
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Inspired by previous work on Motion Graphs [KGP02,
PP10], we propose the Perception-Action Graph (PAG) as
a method for accelerating and improving the quality of data-
driven crowds. Preprocessing the input data into forming the
PAG is key since it offers significant advantages at simula-
tion time over traditional techniques:

1. Simulation run-time performance is improved signifi-
cantly since the PAG groups together similar states and
interconnects them with actions, reducing the need for
continuous database searches.

2. Simulation has improved adaptation to the source data
since action selection is directly influenced by previous
states and action; not just the current state as in most tra-
ditional data-driven approaches.

3. Since the PAG is constructed at preprocessing, more ac-
curate and expensive comparison methods can be em-
ployed for finding and grouping similar states or even for
learning new actions (such as the regression-based action
selection mechanism by Lee et al. [LCHL07]) instead of
doing so at run-time.

The proposed method has been tested on a number of sce-
narios with different input data and the results show that
when compared to a method similar to the one employed
by Lerner et al. [LCL07], performance increases by up to an
order of magnitude and quality is at least similar.

2. Previous Work

Crowd simulation is concerned with the simulation of groups
of virtual characters which typically have common goals and
characteristics such as people in a parade, flocks of birds
and fans in a stadium. As a field, crowd simulation has been
extensively studied and applied by various scientific areas
such as psychology, computer graphics, safety engineering,
etc. Good overviews of the area can be found in the books by
Thalmann and Musse [TM07] and Pelechano et al. [PAB08].

Over the years, a large number of different methods have
been proposed in the literature taking widely different ap-
proaches. Some of the early works such as the seminal
work by Reynolds [Rey87] and many that followed there-
after [Rey99, LD04, ST05] employ rule-based approaches;
individual characters take into account a local view of their
state and act upon it. Others borrow ideas from fluid mechan-
ics [Hug03, TCP06], while others make use of particles and
social forces [HM95,HLTC03,POSB05]. Although some of
these methods are quite scalable and can capture the aggre-
gate behavior of a crowd fairly well [TCP06,NGCL09], they
cannot fully capture the range or the subtleties of individual
behaviors. Complex behavior patterns can be implemented
in some rule based systems [Mas07] by defining many finely
tuned situation-specific rules which are in most scenarios
quite difficult and laborious to define by a non-expert.

Data-driven techniques have been extensively used in
many areas of computer graphics. For example, many recent

texture synthesis techniques are able to synthesize large tex-
tures from small examples [KSE∗03] and fill in holes in im-
ages [DCOY03]. The image analogies approach uses exam-
ples to learn about and reproduce relationships between im-
age pairs [HJO∗01]. Other applications include surface com-
pletion [SACO04], image colorization [ICOL05] and image
segmentation [SCCOL06]. Zhang et al. [ZCM11] employ an
idea similar to motion graphs [KGP02] for fire simulation.

Recently, data-driven crowd simulation methods have
emerged as an attractive alternative to manually defining the
crowd simulation model. The promise in these approaches
is that agents will “learn” how to behave from real-world
examples, keeping the natural crowd ambiance with a wide
range of complex individual behaviors without the effort
of defining an explicit behavioral model. One of the ear-
liest data-driven techniques for groups of characters em-
ployed a motion graph approach for synthesizing group be-
havior [LCF05]. In order to be able to build a tractable mo-
tion graph, this method makes the assumption that the in-
put follows a well defined behavior model, such as a flock-
ing system with a restricted configuration space; i.e., the
group has a constant number of agents and is simulated as
an entity. Graph based simulation was also used by Kwon
et al. [KLLT08] for guiding a single group of agents navi-
gating together. The great variation in the movements of a
general human pedestrian crowd would render these meth-
ods impractical.

In recent works [LCHL07, LCL07] trajectories learned
from videos of crowds are stored in a database alongside
some representation of the stimuli that affected them. Dur-
ing simulation, agents match their stimuli to the ones stored
in the database and navigate accordingly. Following from
these, Lerner et al. [LFCCO09] used a database approach to
add secondary actions to simulated characters such as talk-
ing or looking at their watches. Ju et al. [JCP∗10] take in-
put data that represent different styles of crowds and blend
them to generate new crowd animations. Metoyer and Hod-
gins [MH03] allow the user to define specific examples of
behaviors, while Musse et al. [MJBJ06] extract paths from a
video for a specific environment.

As an alternative to employing databases of example sit-
uations, some techniques use observations of real people
to extract simulation parameters. Several works [PPD07,
POO∗09] estimate collision avoidance and anticipation pa-
rameters by examining motion capture data in a controlled
environment and propose prediction based approaches for
crowd steering. Moussaïd et al. [MPG∗10] used data from
videos of real crowds to modify Helbing’s social forces
model [HM95] to handle group formations in a more real-
istic way. In the work of Courty and Corpetti [CC07] the
crowd is seen as a continuous flow and the captured data are
used to define the guiding vector field. Looking a bit fur-
ther away, biology researchers [HCH10] proposed using in-
put from stereoscopic videos of Starling birds to estimate a
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statistical model of their massive and complex flocking be-
havior. In all of the techniques described here, the examples
are used to refine an underlying behavior model therefore
they are still bound by the limitations of the model.

Very relevant to our work are the data-driven methods
used very successfully in animation and motion synthesis
for single or two interacting characters [KGP02, HPP05,
RSH∗05,PP10,KCPS08,SKY08]. In these techniques, a mo-
tion graph is constructed that interlinks transitions between
postures of one or two characters whereas in the proposed
method connections are made between perceptual informa-
tion of multiple characters.

In typical data-driven crowd steering methods such as the
ones by Lerner et al. [LCL07] and Lee et al. [LCHL07], a
(state, action) database is queried multiple times per simu-
lation step, potentially once for each character, in order to
retrieve the best matching examples and then the best possi-
ble action is found. These queries are usually the bottleneck
due to both the high dimensionality of the state represen-
tation and the number of results that are returned. High di-
mensionality searching can typically be addressed using ap-
proaches such as Principal Component Analysis (PCA) that
infer some penalty on accuracy. Even though search perfor-
mance is improved, selecting the best action is still costly
since all of the returned results need to be processed. In ad-
dition, such approaches assume that crowd steering is more
or less a Markov process; decisions are based on the current
state of agents or at most the previous step’s decision and
not previously taken actions and states. In order to improve
both run-time speed and quality for data-driven crowd sim-
ulations, we propose a method that groups similar states and
interconnects them in a graph like structure, the Perception-
Action Graph (PAG) that is employed at simulation time.
The proposed approach differs from the approach followed
by Ju et al. [JCP∗10], where given a set of crowd data (sim-
ulated or real), new and potentially much larger crowds are
generated by interpolating between them.

3. Overview

As in previous data-driven methods, a person’s behavior is
assumed to be affected mainly by external stimuli such as
other characters and objects. It is acknowledged that inter-
nal stimuli emanating from a person’s state of mind, mood,
beliefs, higher level goals and so on, are also important but
these are hard to observe in the input data and are therefore
neglected. More specifically, in this work it is assumed that
steering behaviors, such as turning, accelerating or stopping
depend on the flow of perceptual information a person ob-
serves; similar to the synthetic vision approach followed by
Ondřej et al. [OPOD10]. Input data can be obtained either
from videos of real life crowds or extracted from crowd sim-
ulations. The proposed methodology can be used to control
the low level steering behavior of individual characters, who
might or might not have a desired short term target destina-

(a) Visibility Based (b) Radial Based

Figure 1: In (a) instantaneous state is represented as the
agent’s visibility whereas in (b) the agent’s surrounding area
is divided into radial regions and the distance to the closest
neighbor is found for each (similar to [LCHL07]).

tion. If needed, the virtual characters can be further orches-
trated by an independent higher level controller/path planner
that assigns goals at run-time.

The proposed framework operates in two phases; prepro-
cessing and run-time simulation. At the preprocessing stage,
similar situations are identified, clustered and interconnected
in a graph structure (the PAG) exploiting possible transitions
from one perceptual state to another. Each cluster stores also
the different actions taken by people due to those situations.
Additionally a database of actions that were taken in inter-
action free (IFDB) situations is generated. At run-time, sim-
ulated agents employ both the PAG and the IFDB to effi-
ciently simulate behavior similar to the source data.

3.1. Data Preprocessing

The trajectories of people in the input data are tracked and
sampled at regular intervals (Figure 2). Each sample encodes
the instantaneous state of a person relative to its local coor-
dinate system; i.e., with the person centered on the origin
facing alongside the positive Z-axis. A set of N consecutive
instantaneous samples on the same trajectory (a clip of 0.5–
2 seconds) represent a temporal example situation encoun-
tered by the person (we call this the Temporal Perception
Pattern – the TPP) which practically encodes the flow of in-
formation he observes (Figure 4).

All these examples are preprocessed and linked together
into the PAG data structure. The PAG is a directed graph G=
(V,E) in which a node Vi represents a group of similar TPPs
and an edge Ei, j represents an action Ai, j that was partially
responsible in transforming the TPP stored in node Vi to the
one in node V j (Figure 5). An action is defined as a trajectory
segment followed by a pedestrian in the input.

3.2. Simulation

A simulation scenario consists of the static environment
alongside the initial configuration of the characters (posi-

submitted to COMPUTER GRAPHICS Forum (5/2014).



4 P. Charalambous & Y. Chrysanthou / The PAG Crowd

Figure 2: Preprocessing pipeline. People from videos of real life crowds or expensive simulations are tracked, trajectories are
extracted and sampled resulting in the PAG generation alongside a database of interaction free trajectories (IFDB).

tions, velocities, goals). Each character is represented as a
circular agent. During simulation, agents perceive the envi-
ronment at regular intervals to generate TPPs similarly to
the preprocessing step. If the agents sense no stimuli in their
view, they simply move towards their goals by selecting ap-
propriate trajectories from the Interaction Free DB. When-
ever interactions are sensed (i.e., some external stimuli en-
ters the sensing area of the agent), agents search the PAG to
find the best matching node as a starting point to handle the
interactions (Figure 3).

Graph traversal leads to behaviors such as collision avoid-
ance, stopping to talk to each other, following someone, etc.
Neighboring agents coordinate to select the best actions at
each simulation step by performing constrained walks of the
PAG. Best actions are defined as the ones that minimize the
error between actual agent states and those stored on the cur-
rently traversed nodes of the PAG (Figure 8).

A more detailed description of the preprocessing and sim-
ulation phases follows in Sections 4 and 5 respectively.

4. Graph Construction

In this work, people’s temporal state (the TPP) is visibil-
ity based; i.e., behavior is directly correlated to informa-
tion from a person’s view field, similarly to the approach by

Figure 3: Agents’ state diagram. An agent moves towards its
goal by using the interaction free trajectory DB. Whenever
an interaction is detected; it utilizes the PAG to resolve it.

Ondřej et al. [OPOD10]. This approach was employed since
sensory information from viewing is typically much larger
than from the other senses [Nør91] and plays a large role in
action selection. It is important to emphasize here that the
underlying method can be used with other state represen-
tations also as long as the state vector is encoded using a
constant number of values (e.g., the approaches in Figure 1).

Visibility Visibility encodes the free space in the field of
view (FOV) of a person; i.e., the space that is not occluded
by other people or static objects as this is projected on the
floor. People are modeled as circles projected on the ground
plane. The FOV is aligned to a person’s moving direction
(Figure 1a) and is sampled at regular angular intervals. For
each angular sample the distance to the closest object (static
and dynamic) is found using either ray-tracing or a z-buffer
style approach. The sampling interval is dependent of the
FOV width, the search radius and the size (radius) of the
agents; dense sampling gives better approximation of the
visibility at the expense of performance and memory stor-

Figure 5: A PAG represents transitions from one TPP to an-
other. An edge Ei, j between two nodes Vi and V j represents
an observed transition. This transition was partially the re-
sult of a trajectory (red lines) followed by a person with a
TPP similar to the one stored in Vi.
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-20 frames -15 frames -10 frames -5 frames current frame TPP (Combined)

Figure 4: A Temporal Perception Pattern (TPP) consists of a set of consecutive in time visibility patterns. (top row) Five equally
spaced in time visibility patterns define a TPP. (bottom row) A compressed version of the TPP.

age. For most of the conducted experiments, the FOV ranged
between 90◦ to 240◦ and was sampled using 20 to 40 rays.

TPP A predefined number of consecutive trajectory sam-
ples (i.e., a clip of instantaneous states) are grouped together
and form a Temporal Perception Pattern (Figure 4). By us-
ing temporal information, the relative positions and actions
of people are encoded indirectly; i.e., without any explicit
definition of each individual’s velocity. TPPs without any
stimuli are assumed to be interaction free and are added in a
database of interaction free cases (IFDB) (Figure 2). The re-
maining TPPs are inserted into a Perception Action Database
(PADB) of (state,action) examples where states are repre-
sented by TPPs and actions are trajectory segments. Each
state is of relatively large dimensionality; if for example a
trajectory is sampled 5 times per second and for each sam-
ple the visibility is represented with 20 values, 1s of state is
encoded using 100 values.

The PADB could then be queried by each agent during
simulation to extract the best matching examples using a
nearest neighbor algorithm and then apply the retrieved ac-
tions, either directly or after further processing. This ap-
proach is the most commonly used in the data-driven liter-
ature for crowds [LCL07, LCHL07, TLG11]. Instead of fol-
lowing this expensive practice, a different approach is em-
ployed here: similar TPPs are identified, grouped together
and interconnected indicating transitions between them to
form the PAG, a directed graph which is used to speed up
the simulation in a reliable manner.

In Sections 4.1 and 4.2 a description of the similarity met-
ric and the graph generation algorithms are presented.

4.1. TPP Similarity

TPPs are grouped together to form the PAG using an ap-
proach conceptually similar to that employed in single char-
acter animation. In Kovar et al. [KGP02], good transition
points between poses are found using a metric that takes

into account both joint positions and orientations over a time
window. The distance metric in this work measures similar-
ities between TPPs: for each pair of agents (A,B) and each
pair of TPPs (PA,k,PB,m) at frames k and m respectively, their
distance is found using a correlation metric and a normalized
distance matrix is calculated for all sampled frames (Fig-
ure 6) (with 1 indicating maximum and 0 minimum similar-
ity respectively). For an input dataset of N pedestrians, N2/2
distance matrices are generated due to symmetric properties
of the data.

Unlike pose comparisons where the number of joints is
constant, the number of stimuli in an agent’s TPP might
vary from 0 to any number. To measure similarity between
TPPs, a metric is required that has a constant number of
features and in addition compresses well and is insensi-
tive to small changes, especially in the distant stimuli. The
proposed metric is based on smoothed out versions of the
TPPs using the lower frequency coefficients of its type-II
DCT (Discrete Cosine Transform) [ANR74]: each visibility
pattern of the TPP is considered as a signal x j(θ), where
x j : [−θ/2,θ/2] 7−→ [0,r], θ is the field of view of the agent
and r is the maximum search radius of the agent. By concate-
nating all m visibility signals x j of the TPP, we get a signal
representation of the whole TPP: x = (x1,x2, ...,xm). This
signal is sampled at regular intervals to generate the sam-
pled signal x′ = {xi : i ∈ [0,N−1]}. The DCT of this signal
is X = {Xk : k ∈ [0,N−1]} where:

Xk =
N−1

∑
i=0

xicos
[

π
N
(i+

1
2

k)
]

(1)

Out of these N coefficients (X0 to XN−1), a small number
M (M < N) of the lower frequencies are enough to approx-
imate the original TPP quite well. For example, the TPPs in
Figure 7 can be approximated using just 8− 12 DCT coef-
ficients despite the TPP complexity. Additionally, the TPP
comparison is more stable since data is de-noised at the

submitted to COMPUTER GRAPHICS Forum (5/2014).



6 P. Charalambous & Y. Chrysanthou / The PAG Crowd

Figure 6: Similarity map for a video of a “flock” of 24 people in a tourist site (left image). Horizontal lines indicate the trajectory
of a tracked pedestrian over time whereas diagonal lines interconnect points where pedestrians had similar TPPs as these were
found by distance matrices (right image).

boundaries of the visibility. In effect, this approach smooths
out the distance matrix. To compare two signals x and y,
the Root Mean Squared Error (RMSE) between their lowest
M ∈ [8,12] DCT frequency coefficients is found and normal-
ized to [0,1]. The RMSE is found at the frequency domain
to reduce calculation cost, since the energy of a signal over
its entire domain is equal to the energy of its Fourier based
transform over all the frequencies [PdC06]. The correlation
of the two signals is calculated using Equation 2:

CORR(x,y) = 1−

√√√√ 1
N

M−1

∑
i=0

(Xi−Yi)2 (2)

X and Y are the DCT transformed signals of x and y re-
spectively. One row of the distance matrix indicates the sim-
ilarity of a specific TPP to all other TPPs in the input data
and the local maxima of each row indicate the best matches
of that TPP. This approach differs slightly from the one fol-
lowed by Kovar et al. [KGP02], where the best transition
points are found in a local neighborhood since it gener-
ates relatively well connected graphs. Out of these maxima,
the best over a threshold are selected (typically > 0.9); in-
creasing this threshold value results in increased quality but
with fewer interconnections and therefore less choices dur-
ing simulation (Section 6). Table 1 lists thresholds for the
experiments presented in this work.

4.2. Temporal Perception Patterns Interconnection

Once the best matches are found, a directed graph (the PAG)
connecting transitions between TPPs is generated (Figure 5).
In Figure 6, a semantically similar graph to the PAG display-
ing the connections between similar TPPs can be seen. Each

node Vi of the graph groups together similar TPPs and an
edge Ei, j between nodes Vi and V j is created when a TPP
in node V j was a followup of a TPP belonging in Vi. These
TPPs are temporally overlapped; i.e., the starting section of
the TPP in V j is similar to the ending section of Vi. The
edges of the PAG store trajectory segments that the pedes-
trian in the source data followed. A node has as many edges
as the number of TPPs clustered there. Potentially, node Vi
can have multiple edges pointing to node V j but each edge
can store different actions (trajectories). After the nodes are
interconnected, the PAG is post-processed to remove dead-
ends so that the graph can be used at simulation time without
any special handling.

5. Simulation

The PAG graph can be viewed as a temporal state-action
database. Obviously, if simulated agents follow blindly ran-
dom edges of the graph, the emerged steering behavior will
not be realistic since agents will not be taking into account
other agents and their actions. Additionally a person’s per-
ception changes not only because of his own actions but also
due to other people’s decisions; a fact that should be taken
into account during simulation. TPPs observed during simu-
lation will most likely differ from the ones agents observe on
the currently visited nodes of the PAG and therefore agents
should coordinate so that dynamically generated TPPs match
the ones stored on the graph nodes.

A constrained walk on the PAG graph is proposed: when-
ever an agent senses a possible interaction with other agents
or obstacles it selects the node on the graph that mostly re-
sembles its current state as a starting position for interaction
handling. For as long as there are interactions, the agent tra-
verses the graph coordinating with neighboring agents and
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Original 4 8 12 16 20 24 30

Figure 7: The effect of the number of DCT coefficients (bottom row) on visibility based TPP compression for various cases.
Here only one visibility pattern of the TPP is shown. By using 8-12 coefficients, the original pattern is estimated without much
loss in accuracy.

Algorithm 1 Crowd Simulation - Update Stage
Input:
A: Set of Agents A = {Ai : i ∈ [1,N]}
k: Number of nearest examples
Output
A: Set of Agents A = {Ai : i ∈ [1,N]} with updated positions
Update(A):

for all Agents Ai ∈ A do
if Ai.timeout() is True then

Ai.action← select_next_action(Ai,k)
end if
Ai.update_pos()

end for

applying actions stored on the traversed edges. Possible in-
teraction detection is dependant of the TPP; in the case of a
visibility based pattern this happens when something enters
the agents sensing area (Figure 1a).

5.1. Initialization

In the proposed implementation, each agent is assigned a
path that is either precalculated or dynamically generated us-
ing traditional path finding algorithms [HNR68, vdBFK06].
Although not strictly necessary, this adds control on the
agents something that is lacking in most data-driven crowd
approaches. During the first few steps of the simulation (Al-
gorithm 1), each agent moves toward its next target record-
ing its TPP at regular intervals. The visibility parameters
such as sampling rate, field of view θ, maximum search ra-
dius r, etc., are the same as those used during the construc-
tion of the PAG. Instead of updating each agent at every sim-
ulation step, agents are distributed into X bins and agents
in the same bin are updated synchronously. Bins are up-

dated periodically after X frames of simulation time (X cor-
responds to the trajectory lengths stored on the PAG edges)
so that at each simulation step one bin is updated and agents
in the remaining bins follow previously selected actions (tra-
jectory segments).

5.2. Interaction Free States

As long as an agent has an interaction free TPP, it can
just move towards the target using the trajectory database
(Figure 3). A simplified version of the trajectory segment
that was followed by the agent over the past few sec-
onds (4− 5 2D displacement vectors) is used to query the
database to retrieve actions that people in the input data
followed over similar trajectory patterns (Figure 9). This
trajectory is aligned to the moving direction of the agent
(as were the stored trajectories). In order to enhance the
quality of searches, displacement towards the goal could be
used alongside the simplified trajectory representation. Since
goals are not clear in the limited view of the source data, we
chose not to include displacement. No noticeable artifacts
were observed in the simulations since it is very rare to re-
trieve actions that do not guide agents towards their goals.
Additionally, instead of selecting only the best match, the
k-nearest are retrieved (k ≤ 10) and one that moves agents
toward their next goal is selected and used under some se-
lection probability to avoid deadlock situations where the
agents stay in one place.

5.3. Agent Interaction

As soon as an agent detects a potential interaction (Algo-
rithm 2), it searches to find the node with the best matching
TPP in the PAG using a traditional k-nearest algorithm. To
improve on the speed and quality of this search, we store
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Figure 8: State transitions for three agents (A-C). The num-
bers next to the agents represent the simulation step and the
X symbol indicates that the agent is currently in the PAG. A
and B sense each other at timesteps 2 and 3 respectively and
enter the PAG. B stays on the PAG for three timesteps; up
to the moment it resolves the interaction, whereas A keeps
using the PAG to steer from both B and C up to timestep 10.
C never used the PAG since it never sensed the other two.

simplified (low dimensional) versions of the TPPs in a kd-
tree. A good strategy is keeping the lower frequencies of the
first and last visibility patterns of the TPPs that when com-
bined encode in essence the relative movement of agents and
their neighborhood. A total of 8 to 12 values (4 to 6 coef-
ficients per visibility pattern) were found to be enough to
compress a TPP. By indexing into the kd-tree using this rep-
resentation, the k-nearest matches are found and the best one
is selected by comparing the uncompressed TPPs. This TPP
indicates the agent’s starting node in the PAG to handle the
interaction.

Whenever an agent is visiting a PAG node Vi, a series
of actions are to be considered depending on the outgoing
edges Ei, j of the node and any neighboring agents actions.
These edges lead to typically different nodes V j that corre-
spond to different future states that an agent can possibly be
in. A fitness function O has been defined (Equation 3) that
takes into account neighboring agents future positions and

TPPs stored on the different possible future nodes (depend-
ing on edge selection). The edge Ek with the minimal value
for O is selected as the action to be applied by an agent.

Predicting Future Positions Knowing that the trajecto-
ries stored on the edges are of a constant temporal length,
an agent traversing the PAG can predict future positions of
all neighboring agents depending on their simulation state
(either using the IFDB or traversing the PAG (Figure 9)). At
any given simulation step, agents can belong either in the
currently update bin whereas the remaining ones belong all
the other bins. Agents belonging to different simulation bins
are already moving on edges since actions were selected for
them in previous simulation steps therefore their future po-
sitions are well defined and can be found deterministically.
For the agents currently being updated, their future positions
have to be extrapolated. This is performed using a greedy ap-
proach where agents coordinate; given N agents that need to
be updated in the current step, an agent Ai is selected (typi-
cally the one with fewer possible actions) that predicts the
future positions of neighboring agents using their current
velocity. After Ai selects an action based on these predic-
tions (see following paragraphs), all remaining N−1 agents
know that Ai already has selected that action and can there-
fore calculate deterministically Ai’s future position instead
of using its current velocity. This procedure continues until
every agent is assigned an action. A more expensive alterna-
tive approach is to test all possible combinations of actions
from all N agents and keep the best ones.

Selecting an Edge Given a set of future positions for
agents in a given neighborhood around an agent Ak, its visi-
bility patterns for both the current and next timesteps can be
estimated. This set of visibility patterns represent a potential
future TPP (Pf ); the one that Ak should observe after travers-
ing an edge. Having a set of different future TPPs equal to
the number of possible actions that Ak can perform, the edge
Ei, j that minimizes the difference between Pf and the TPP

stored in node V j is selected (P( j)
n ). In essence, each agent

tries to be consistent with the information on the graph;
whatever the agent perceives from the environment and rep-
resents its state should match what the agent is observing on
the PAG graph.

Instead of only trying to minimize the error between the
TPPs, an objective function O was defined that takes into
account the target distance also:

O(P( j)
n ,Pf ,Tc,Tf ) = (1− corr(P( j)

n ,Pf ))
α
(

Tf

Tc

)β
(3)

Pf and P( j)
n represent the predicted TPP and the TPP

stored at the end of an edge Ei, j respectively, whereas Tf and
Tc represent future and current distances from the agent’s
target. Function corr(Pf ,P

( j)
n ) calculates the correlation be-

tween the two parameters, with values of 1 and 0 indicat-
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Figure 9: Action Selection Mechanism. Agents B, C and D
selected an action in previous simulation steps, whereas the
rest need to select an action. Do do so, A and E use the PAG
whereas F and G use the IFDB since they currently do not
sense any interactions in their FOV. A and E coordinate to
select the best possible actions using known trajectories of
B, C, D, F and G and extrapolated information.

ing maximum and minimum correlation respectively (Equa-
tion 2). Parameters α and β represent weights for the two
factors. For most of the presented experiments, weights α
and β are assigned to 1; i.e., both are of equal importance.

Handling TPP Errors After traversing an edge, there is a
possibility for error between the observed TPP and the ones
on currently visiting nodes. This can lead to inconsistencies
on the graph walks, i.e., an agent might drift and move on
nodes that differ significantly from what the agent perceives.
This can happen due to limitations of either the data or the
scenarios: either the input data do not have situations sim-
ilar to ones found in simulated scenarios and therefore not
all possible states could be captured, or the graph does not
have much connectivity due to limited data and therefore a
limited number of actions can be considered. Two policies
were considered to handle this based on an error threshold:

• jump: when the observed error is large, agents can jump
to better matching nodes using the same approach as in
Section 5 introducing a penalty in performance at the cost
of better quality or

• no jump: agents simply ignore the errors and continue
traversing the graph trying to minimize the error in the
long run, keeping the cost low at the expense of quality
(such as collisions, or actions that are not necessarily the
best for the given situation).

Algorithm 2 PAG: Select Next Action
INPUT
Ai: An agent that can be queried for current state.
k: Number of nearest neighbors
select_next_action(Ai, k):

error← 0
action← new_action()
state← Ai.query_environment()
if state. f ree() is True then

action.tra jectory← get_tra jectory_to_target(Ai)
end if
if state.moving_on_graph() is True then

Ai.node← Ai.edge.target_node
error← Ai.node.visibility− state.visibility

end if
if error is large or state.on_graph() is False then

Ai.node← select_best_node(Ai,k)
end if
Ai.edge← select_best_edge(Ai.node)
action.tra jectory← trans f orm(Ai.edge.tra jectory)

return action

For most of the experiments, assuming that the graph is
well connected and the update frequency is high enough
(e.g., every 5 simulation frames), the no jump strategy works
well, since agents in inconsistent nodes adapt and move to-
wards consistent nodes in just a few steps. The jump policy
can be thought of as a weight factor on selecting between
two data-driven approaches: the simple k-nearest one and the
PAG. An always jump policy that forces jumps at every sim-
ulation step is basically the simple database approach where
at each timestep a search is committed to find the best match-
ing state.

6. Results

We have run a number of tests using as input both real and
synthetic data (Table 1), to evaluate various aspects of the
PAG simulation framework. Additionally, the simulator was
implemented employing a server based approach to allow for
wide system integration and to decouple the simulation from
rendering (assuming a fast and reliable network). The sys-
tem was implemented in Python and C/C++ with real-time
OpenGL and Unity3D rendering clients. All simulations are
single threaded and executed on a single core of an Intel Core
2 Quad Core Q8300 clocked at 2.50GHz PC with 4GB of
RAM and no GPU acceleration. Evaluation was performed
for both simulation quality and performance.

Quality To evaluate the simulation quality, two approaches
were followed. On one hand different scenario cases were
run using different input data (such as videos of people walk-
ing in a busy street, people chatting, students in university
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Name Trajectories
Input Size Construction
(frames) Threshold

lerner-flock 23 766 0.95
lerner-zara 148 9013 0.95

lerner-students 330 4432 0.98
eth-hotel 280 18060 0.98
eth-eth 360 12380 0.98
lee-chat 10 602 0.95

reynolds-pedestrians 50 500 0.99

Table 1: Input datasets used for the experiments in this work.

campus, etc.) from different videos and existing rule based
crowd simulation systems and the simulated result was visu-
ally compared to the input data (Table 1). On the other hand,
different metrics such as speed, angular change histograms
and various other metrics were calculated for both the input
data and the simulations and then compared (similar to the
work of Singh et al. [SNK∗08]). The first “looks good” ap-
proach is employed by most of the previous works on crowd
evaluation and can act as a first indication of the quality of
the simulations, whereas the second approach tries to corre-
late the input and output statistics in a quantitative manner.
This two-fold strategy was followed since we believe that
crowd simulations should be evaluated both quantitatively
and qualitatively; people tend to expect more when evaluat-
ing virtual people and in a lot of the cases they might over-
estimate or underestimate the quality of the underlying al-
gorithms, whereas statistics alone might be misleading since
simulations with similar statistics might be completely dif-
ferent in appearance.

Performance A method similar to the one used by Lerner
et al. [LCL07] was implemented to study the timing benefit
of using the PAG approach. In this method, during simu-
lation and at every simulation step, all of the agents query
a database of examples using the agent’s current state us-
ing Approximate Nearest Neighbors (ANN). Each query re-
turns the k-nearest (state, action) pairs out of which the best
example is selected using a more aggressive and accurate
comparison method. In order to have a fairer comparison
and eliminate any variations that might arise due to different
state representations, TPPs were also used to represent state
and replaced the state representation described by Lerner et
al. [LCL07]. It should be noted here that the state represen-
tation by Lerner et al. could be used to generate the PAG
graph; TPPs can be any time varying state representation
of constant dimensionality (Figure 1). The same coding op-
timizations and parameters are used throughout the imple-
mentation of both methods, thus in the results that follow
we emphasize more the relative speed-up and pay less atten-
tion to absolute frame rates – a pure C/C++, more optimized,
implementation of the same methods would surely be signif-
icantly faster.

For all the experiments described in this section, each sce-

nario was run multiple times (10 times) and results were av-
eraged out to reduce artifacts due to noise such as OS task
scheduling, disk operations, etc. It should be noted here that
in most cases each separate simulation is actually well be-
haved with low variance (i.e., it is of Θ(g(n)) complexity).

6.1. Preprocessing

Typical graph construction time ranges from 1 to 60 minutes
and is highly dependent on the input data size. Construction
time includes the data preprocessing and analysis, similarity
comparisons and graph generation which is simultaneously
stored on disk for later use alongside with all the neces-
sary parameters. A large PAG graph takes up to 30MB when
loaded in memory. During our experiments it was found that
good values for graph construction are of 95-99% similarity
which provide good connectivity and also keep the number
of edges relatively small. Typically the similarity threshold
is selected to generate on average ≈ 10 edges per node with
small variance. This ensures for a fairly good number of al-
ternate choices during graph walks and relatively constant
run-time per simulation step. Also, 8-12 DCT coefficients
were used for most of the experiments since they keep the
most important features of the TPPs (Figure 7).

6.2. Scenarios

A series of different scenarios were used to demonstrate the
adaptability of the algorithm on the data and on new environ-
ments. Simulated trajectories and timing results for agents
with simple targets can be seen in Figure 10. Please consult
the accompanying video for the full simulated results.

Opposing Agents Separate experiments with two and
four agents moving against each other to reach at the other
agent’s starting positions were conducted to demonstrate
simple interactions. All the experiments were run using dif-
ferent input data (Figure 10) with the exact same parame-
ters; a field of view of 90 degrees was used, with a history of
0.6 seconds and graph construction quality 90-99%. Differ-
ent source data have a profound effect on the simulations; by
using as input a source video with people chatting (lee-chat),
in both cases the simulated agents stop when they sense each
other and start chatting. After a few seconds, they disengage
and move towards their targets. By using as input videos
of people in busy streets (eth-hotel, lerner-zara) the agents
avoid each other to reach their targets. The eth-hotel dataset
has faster pedestrians with larger variations in their moving
patterns than the lerner-zara dataset and therefore the agents
reach their targets faster (21s vs 26s travel time respectively
for the four agents) but avoid each other whilst having larger
interpersonal distances.

Butterfly To demonstrate once again the subtle differ-
ences between the lerner-zara and eth-hotel datasets of
pedestrians a butterfly like environment was simulated. The
eth-hotel dataset results in a more varied simulation with
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Opposing (2) Opposing (4) Circle (14)

lee-chat eth-hotel lee-chat lerner-zara eth-hotel reynolds-pedestrians

53s 20s 68s 26s 21s 31s

Butterfly (80) Manhattan (300) CGF Logo (60)

lerner-zara eth-hotel lee-chat eth-hotel eth-hotel lee-chat

Figure 10: Trajectories for various crowd simulations using different input data and scenarios. Please consult the accompanying
video for the simulations.

larger distances to the desired path whereas the behavior de-
rived from the lerner-zara dataset is more uniform.

Manhattan A relatively large crowd of 300 agents is sim-
ulated (8000 frames) in a Manhattan like environment with
city blocks and streets. By using the lee-chat dataset, the
resulting trajectories are closer to each other and “chatting
knots” between simulated agents are observed resulting in
gossip town. The eth-hotel dataset on the other hand results
in wider groups of trajectories covering most of the street
areas with minimal chatting adapting to the source data –
a street outside a hotel with people moving and sometimes
stopping to chat with one another.

CGF Logo Agents in these 5000 frame simulations try to
stay on paths that form the CGF logo whilst at the same time
interacting with each other with varying results depending
on the input data. The lee-chat dataset generated a thinner
logo than the eth-hotel dataset with chatting areas visible.

6.3. Speed vs Quality

In what follows, a new trajectory segment for each agent is
fetched after every 5 simulation frames in a 25 frames/sec
simulation environment. In traditional data-driven tech-
niques at each simulation step every agent generates a query
describing its current state and searches an example database
for the best matching example. Usually databases are stored
in a spatial acceleration structure such as a kd-tree which has
O(log2n) performance, where n is the number of examples
in the database. In the proposed method, a kd-tree is also
used in a similar way but only at the beginning of an agent’s
interaction (see Section 5); i.e., whenever an agent senses
some stimuli in its sensing area to find the starting node in

the PAG. For all the subsequent frames, that agent just tra-
verses the PAG until interactions are resolved. The number k
of (state, action) pairs that are returned by the kd-tree query
has a big effect on the speed and the quality of the methods
since all these examples are used for action selection either
by selecting one of them or by combining them.

In the top row of Figure 11 we see the effect of k on tim-
ing and collision-avoidance quality for a sparse crowd. Both
methods have similar performance for small k, however the
ANN approach has much worse collision-avoidance quality
than the PAG method. As we increase k, ANN’s collision
performance improves but at a much higher cost than PAG.
In order for the ANN to obtain similar results to PAG in this
scenario the frame rate decreases by more than 18 times. We
note here, that one possible way of handling collisions in the
PAG framework is by using the jump policy described at the
end of Section 5 which can act as an intermediate approach
to PAG and ANN – given a large enough error on the state,
we search for a new node to handle the interaction. Given
enough data so that the graph is well connected and the input
state space has larger coverage, the PAG typically has better
collision-avoidance quality than ANN. Another alternative
for collision handling is using a different graph (or database
in the case of the ANN) that potentially handles states that
the original data could not handle. In the right part of Fig-
ure 11 we see the simulation scenario that corresponds to
these results. The input trajectories were extracted from a
Reynolds Opensteer pedestrian simulation [Rey99] using a
similar hexagonal configuration (Table 1).

In Figure 12, the results for a single street scenario can be
seen for different input data. The PAG based approach scales
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Figure 11: Comparison between the PAG approach and an
ANN based one for 2000 frames of simulation time for a
hex like environment of 30 agents. The PAG approach out-
performs ANN up to 20 times (for k = 100) and is virtually
independent of the kNN search (lines). It also has much bet-
ter collision performance (dotted lines).

much better than the ANN approach where performance
falls exponentially whereas in the graph based method there
is some performance penalty due to the increase of k, but this
effect is linear due to the constant number of choices (edges)
the algorithm has to consider after selecting the best match.
In the ANN approach on the other hand, k results have to be
processed at every simulation frame for every agent making
this approach very expensive for a real-time environment.

6.4. Simulation Step

In order to have a smooth result the update phase of the simu-
lation needs to be small. As the agents compute a new trajec-
tory segment more regularly, they become more responsive
to changes that happen around them and they have smaller
deviations from their paths (Figure 13). However, in a tradi-
tional data-driven simulation there is a fixed cost per query
and as the frequency of the simulation increases, the overall
cost increases linearly. In the PAG method the cost of graph
traversal is usually much smaller than the initial query to
enter the tree; the performance cost comes from the edge se-
lection mechanism and not nearest neighbor searches which
are quite slow. Increasing the size of the input data might
increase the average edge count, but this happens in a much
slower rate and cost increases by a much smaller rate. The
input for the presented example was the lerner-zara dataset
and the simulation environment was a similar sized rectan-
gular area with 30 agents entering from locations similar in
position as the input data.

7. Discussion

A new data-driven method for efficient agent-based crowd
simulation was introduced, the Perception-Action Graph.
Groups of similar Temporal Perception Patterns are identi-
fied and grouped together into a graph which in turn is used

by simulated agents at run-time. These TPPs are encoded
using a compressed form based on their DCT transform to
reduce noise and speed up searching for PAG nodes. Agents
then perform constrained walks on the graph and try to im-
itate the behavior of real crowds. Increased performance
gains are shown over an approach based on Nearest Neigh-
bors search – the basis for most data-driven crowd simula-
tion algorithms. This method can be used for real-time sim-
ulation of data-driven crowds in contrast to most data-driven
methods.

One of the limitations of the current system is that if the
simulated scenario is very different from the input data, for
example the crowd is much more dense, undesired behav-
iors such as collisions might appear. Related to this is the
amount of data that is really needed to simulate a crowd. It
has been observed in our experiments that in a lot of cases in-
creasing the data beyond a certain point did not improve the
performance or quality much. In addition, in cases where the
graph connectivity is low, the selection of the initial node for
entering the PAG becomes even more important. Instead of
selecting the best matching node a reward function could be
defined that estimates the potential gain of selecting a node
over another. One strategy that could be employed to help in
this issue could be the use of the jump threshold; i.e., agents
might jump during traversal to another node if a large error
between their current state and the one currently observed
on the PAG is found.

One of the most important issues we are dealing with, is
the amount of data that are really necessary to simulate re-
quested scenarios. We are currently investigating approaches
to this problem so that both the state and action spaces are
covered as much as possible.

Another limitation of the system is that it does not sim-
ulate groups explicitly. Groups do form due to temporal
circumstances but might not stay consistent throughout the
simulation. Group formation could be modeled in the PAG
framework by studying their distribution in the input data
and then modifying the optimization function (Equation 3)
to take them into account. For example, agents could op-
timize also for interpersonal relations such as velocity dif-
ferences or formations similar to Mousaïd et al. [MPG∗10].
One alternative solution is to define a higher level controller
to constrain the choices of the steering layer. This higher
layer controller could be either data-driven, i.e., a formation
model is extracted from the data or it could be manually de-
fined.

Currently, goals are not encoded in the state space (TPPs
and the trajectory segments of the IFDB). One possible di-
rection, is deriving from the source data goals and integrat-
ing them in the state. This approach could potentially in-
crease the quality of the search and simulation.

Finally, we are planning on performing some percep-
tual studies of the quality of the simulations alongside a
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(a) ANN (b) PAG (c) Speed-up

Figure 12: Timing results for a store street scenario having 40 agents for different input datasets. The simulation frame rate
for (a) the ANN approach drops exponentially and far below the real-time mark for k ≥ 25, whereas for (b) the PAG approach
decreases linearly but still remains over the real-time mark even for values of k > 100.

(a) (b) (c) Period = 5 frames (d) Period = 10 frames

Figure 13: (a) The simulation environment. (b) Increasing the period over which the simulation is updated, the PAG method
outperforms ANN by a large margin. (c) (d) Increasing the period from 5 to 10 frames generates a more unresponsive simulation
with slightly different behavior (Opposing Scenario trajectories) – the agents sense interactions more or less at the same time
but because they use different future predictions (5 against 10 frames) the resulting simulation is different.

more thorough statistical based evaluation since collision-
avoidance quality by itself is not sufficient and can be mis-
leading (i.e., a simulation with no collisions at all could sim-
ply be agents that move in opposite directions).
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