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Abstract—Designing computer games requires a player-
centered approach. Whilst following guidelines and functional
requirement specifications is part of the process, observing and
measuring qualities of the players experience is key in providing
feedback to game designers. Moreover, it can also be used
to create adaptive and personalized experiences for players.
With the advancement of affective computing and gaming user
interfaces, the opportunity to recognize the player’s emotions
becomes more feasible and each different modality can offer
additional information as affect expression is less defined as
compared to action selection. This paper explores the use of
3D skeleton motion data transformed to 2D images that encode
pose and movement dynamics to represent annotated emotions.
The 2D images are then used to train and test the Inception
V3 CNN model on a binary classification emotion recognition
between happy and sad emotions. Preliminary results in unseen
test data indicate that the above transformation technique can
capture emotional information. The paper also discusses future
directions that may improve the effectiveness of the proposed
method on a wider scale.

Index Terms—emotion recognition from body movements, deep
convolutional neural networks

I. INTRODUCTION

As the gaming industry evolves, more sophisticated and
natural user interfaces are being introduced, gradually replac-
ing traditional controllers. Such interfaces make extensive use
of modalities such as body motion gestures and voice which
are nowdays becoming popular in gaming and virtual reality
applications. The former, motion data, has the potential to
achieve an added level of immersion through the physical
embodiment of the player character in real time [1]. This
makes it a very strong candidate for an emotion recognition
modality, and has already been identified and is being explored
by researchers [2] [3] [4] [9]. Deep Learning (DL) has been
deployed in computer vision applications offering significantly
improved results compared to traditional machine learning
techniques. Particularly for human action recognition from
motion data, Convolutional Neural Networks (CNNs) have
been used extensively due to their high performance success
on images or videos tasks [5].

This paper focuses on the classification of emotions from
3D body movements, which are transformed to 2D images,
that encode posture and motion dynamics in pixel values.
Those images are used as input to retrain the last layers of
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a pre-trained Deep CNN applying the popular methodology
of transfer learning.

II. RELATED WORK

Traditional machine learning techniques have been improv-
ing in terms of accuracy but rely on handcrafted features [2]
[3] [4] [9]. The use of deep learning techniques to automat-
ically extract effective features from multimodal information
and classifications are new directions currently actively pur-
sued by researchers, but several challenges remain in realising
an end-to-end deep learning system. With the availability of
large datasets, deep learning has become a state-of-the art
solution to problems such as emotion recognition. Kim et al.
[6] for example propose a CNN-based model for a hierarchical
feature representation in the audio-visual domain to recognise
spontaneous emotions. Results showed that improvement of
recognition accuracy is achieved when hierarchical features
and multimodal information are adopted. In another effort,
models are constructed from multiple physiological signals
collected from sensors placed on the human body by adopting
a multimodal deep learning approach so as to improve their
performance and reduce the cost of acquiring physiological
signals for real world applications [7]. To classify spontaneous
multimodal emotional expressions as positive or negative,
researchers proposed a cross channel convolutional neural
network (CCCNN) having the capability of learning and
extracting general and specific features of emotions relying
on body motion and face expression [8].These features were
further passed to cross-convolution channels to build the cross-
modal feature representation.

Deep leaning-based algorithms can be used for feature
extraction and classification. With the use of CNNs the work
spent on the pre-processing of the images is greatly reduced
since the algorithm is already capable of detecting the best
features needed to classify the images. Because CNN-based
methods cannot reflect temporal variations, researchers used
RNN Long Short Term Memory Network (RNN-LSTM) ap-
proaches, in which RNN uses gateway units in addition to the
common activation function, which extend its memory [10].
Such an architecture allows the network to learn and remember
dependencies over more time steps, linking causes and effects
remotely [11]. In recent research, an RNN-LSTM was used
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to identify gestures emotion recognition based on low level
features inferred from the spacial location and orientation of
joints within a track skeleton. [12].

For all the above deep learning approaches, a vast amount
of data is needed to perform training and learning. Moreover,
encoding raw skeleton data to images and then recognising
emotions faces the limitation of a frame by frame representa-
tion of emotions. Our method creates features related to time
from raw skeleton data and converts them to images.

III. METHODOLOGY

The proposed technique is inspired by recent research on
action recognition methods that depict skeleton information
into image-based representations and create features from 3D
skeleton sequences [13]. The feature matrix that is created
contains pose and transition dynamics using distance and
orientation features.

For the pose distance feature within any given frame, the
joint-to-joint Euclidean distance for all the joint pairs combi-
nations was calculated by projecting the 3D joint coordinates
to the three planes perpendicular to the axes X, y, z in a
global coordinate system. The pose distance feature between
two joints i and j for a given frame t is given by the below
equation:
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In the above equation, P is the 2D point created from the
projection of joint i or j on the XY plane for a given frame t.

In a similar way, the transition feature calculates the joint-
to-joint Euclidean distance for all possible joint pairs combi-
nations but within two consecutive frames:
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where:
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observe the difference from calculating distance for frames t
and t-1. Two additional features are calculated based on joint-
to-joint orientations with respect to the horizontal axes X, Y, Z.
Calculating the dot product of each joint-to-joint orientation
with each of the 3 axis vectors allows the extraction of the
orientation angle from the inverse cosine function. An example
is given below for a joint-to-joint vector 7y and the X axis
vector X, where the X notation in the denominator represents
multiplication of numbers.
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And below is the vector from all 3 axes for a single pair of
joints i and j.
t Xaxis,t Yaxzis,t Zaxis,t
R;; = [Tij T g ] (6)
In a similar way, a transition of orientation is calculated
across two consegltive frames, with the same formula as above
but now vector ¢j is calculated with joint i from frame t and
joint j from frame t-1:

t _ 1.Xaxis,t Yaxis,t Zawis,t
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The four features are calculated for all applicable joint pairs
and are normalized using min and maximum values to (0,1).
They are then concatenated in a row to form a feature set for
a given frame. The same process is repeated for each frame
starting from frame number 2 and moving further taking into
consideration the dynamics with the previous frame 3D joint
data. Given this configuration, at the end we have a 2D matrix
with every row being the data for each frame and every column
representing a feature for a particular pair of joints. This data
is then converted to a 2D RGB image.



A. Emotion image generation

There are various ways of representing emotions, either by
using distinct emotions like happiness, sadness, fear, anger,
surprise, disgust or by measuring and contextualizing emotions
according to a dimensional space [16] as illustrated in Figure
2, where emotions are represented in two dimensions of
valence in x axis and arousal in y axis and each emotion
can be viewed in the space defined by these dimensions.
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Fig. 2: The Valence-Arousal space

Starting from the hypothesis that motion data can represent
emotion information, to prepare motion clips for use in a
CNN, we propose the transformation of 3d Spatio-temporal
data to pixel data in the form of normalized posture and motion
dynamics using an approach that has proven to be successful
for action recognition [14]. The posture and motion features
are encoded to RGB 24-bit color images. Each row of the
image represents a single frame of the clip and each column a
different posture or motion dynamics feature as seen in Figure
3.

All clips depict a single skeleton therefore the number of
features is the same in all clips, making the width dimension of
the image common for all of them. However, since each input
motion clip can have a different length in terms of number of
frames, the generated images have different sizes with respect
to the image’s height. To prepare the data for input for the
selected pre-trained CNN, images needed to be converted to a
standard size. This was achieved by determining the maximum
height of all images, witch have variable frames in length and
we padded zeros to the remaining images extended pixels.
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Fig. 3: Image representing a series of postures (rows) with
features (columns)

B. Transfer Learning

Transfer learning consists of taking features learned on one
problem, and leveraging them on a new, similar problem. To
address the given classification problem, we used a pre-trained
model called Inception V3 [15] which is an image recognition
model that has been shown to attain greater accuracy on the
ImageNet dataset. The parameters of the Inception module are
24 Million as can be seen in Figure 4. We have removed the
last layers of the model adding our own layers, to accommo-
date our architecture with the total parameters reaching 24.5
million out of which 2.6 million are trainable.
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We use binary cross-entropy as the loss metric as we have
2 target classes (happy and sad). We have added new trainable
layers as seen in Figure 5. The new layers contain a global
average 2D pooling, then multiple dense RELU activation



layers, and then dropout of 0.3, ending on two neurons for
prediction of the targeted two classes.
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Fig. 5: Added Layers on pre-trained Inception-V3 model

The model learned to convert the existing features into
predictions on the new dataset. The summary of the model can
be seen in Figure 6. The overall architecture of our emotion
recognition method is showed in Figure 1.

Fig. 6: Our Transfer learning model architecture

C. Data Capture

We used an acted emotional body movement dataset [14]
in order to execute a pilot test with 2 emotions that differ
in both dimensions of the Valence-Arousal space. The dataset
contained scenarios to perform a typical and natural expres-
sion, captured by the Axis Neuron motion capture system.
We have selected scenarios of equal male and female actors
and in total we used 208 happiness and 194 sadness different
inputs. All the data were setup using 17 body joints with both
positional and rotational data; we only consider the positional
data.

IV. RESULTS

The network is trained for 30 epochs using a learning rate
of 1073, We used 80% of the input clips for training and 20%
for validation. All experiments are implemented on an Intel
19-07920x CPU @ 2.9Ghz, with one NVIDIA GeForce RTX
2080 Ti card.

The training model was tested with an un-seen dataset of
16 motion clips (8 happiness, 8 sadness), which resulted in an
average of 81% recognition rate as can be seen in table I

Hapiness Sadness
7(88%) 1 Hapiness
2 6(75%) Sadness

TABLE I: Happiness or Sadness classification using Transfer
Learning

V. CONCLUSIONS AND FUTURE WORK

Previous studies [4] [12] showcased that movement dy-

- namics can be used for emotion recognition. Up to now

- we have not seen research contributions in the Affective
: computing domain, that utilise image representations of pose

. and movement dynamics from 3D skeleton motion data. This

technique has been used with success previously for action
recognition [13] and the current project attempts to apply it in
the context of emotion recognition. The proposed technique
utilizes both posture and motion dynamics to construct image
representations of the motion clips. The images are then
annotated with the emotion class of their source clips. The
current technique shows that combining posture and subse-
quent frame motion dynamics in an image that uses rows
as a temporal dimension and columns as dynamic features
can capture affective information. While the initial results
are promising, the study needs to be extended to a larger
set of emotion classes, to determine how descriptive is the
encoding of affect into the produced images. Moreover, new
representations of images should be tested, such as those
derived from other sets of motion dynamics, for example
Laban Movement Analysis features [4] [9]. Further to this, the
training data can be enriched with standard data augmentation
techniques to potentially improve the classification accuracy.
The data augmentation can take place either directly to the
skeleton data before the creation of images (noise on joint
properties, time warping, autoencoder-based among others)
or to the resulting images with traditional image-based data
augmentation techniques. Finally, while the current pilot study
deployed the Inception V3 model, there are other successful
pre-trained CNN models that should be tested and compared
in terms of performance.
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