
Optimization-based Computation of Locomotion Trajectories for Crowd Patches

Jose Guillermo Rangel Ramirez1∗Devin Lange2†Panayiotis Charalambous3

Marc Christie3 Claudia Esteves1 Julien Pettré3

1 Centro de Investigacion en Matematicas, A.C. (CIMAT), Mexico 2 University of Minnesota, USA 3 Inria-Rennes, France

Figure 1: A patch is a time-periodic clip of crowd motion. Given a set of spatio-temporal input and output control points, an optimization
based approach is used to generate crowd motion that can be used to generate high quality crowd patches.

Abstract

Over the past few years, simulating crowds in virtual environments
has become an important tool to give life to virtual scenes; be it
movies, games, training applications, etc. An important part of
crowd simulation is the way that people move from one place to
another. This paper concentrates on improving the crowd patches
approach proposed by Yersin et al. [Yersin et al. 2009] that aims
on efficiently animating ambient crowds in a scene. This method
is based on the construction of animation blocks (called patches)
concatenated together under some constraints to create larger and
richer animations with limited run-time cost. Specifically, an opti-
mization based approach to generate smooth collision free trajecto-
ries for crowd patches is proposed. The contributions of this work
to the crowd patches framework are threefold; firstly a method to
match the end points of trajectories based on the Gale-Shapley algo-
rithm [Gale and Shapley 1962] is proposed that takes into account
preferred velocities and space coverage, secondly an improved al-
gorithm for collision avoidance is proposed that gives natural ap-
pearance to trajectories and finally a cubic spline approach is used
to smooth out generated trajectories. We demonstrate several ex-
amples of patches and how they were improved by the proposed
method, some limitations and directions for future improvements.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: crowd simulation; crowd patches; virtual humans; op-
timization

∗e-mail:josguil@cimat.mx
†e-mail:ange604@umn.edu

1 Introduction

Video Games are constantly displaying larger and livelier virtual
environments due to increased computational power and advanced
behavior and rendering techniques. For example, the recent Grand
Theft Auto (GTA) game [Rockstar-Games 2013] takes place in Los
Santos and its surroundings, a completely virtual city. In spite of
the impressive quality and liveliness of the scene, Los Santos still
remains relatively sparsely populated with virtual people. The rea-
son for this phenomenon is the large computational cost required to
simulate ambient crowds into such large environments. To address
this issue, the Crowd Patches technique has been recently intro-
duced by Yersin et al. [Yersin et al. 2009].

Crowd patches are precomputed elements (patches) of crowd ani-
mations that are time-periodic so that they can be endlessly played
in time. To do so, the boundary conditions of precomputed ani-
mations are accurately controlled to enable combining patches in
space and time so that characters can move between patches and
compose large ambient crowds. This technique eases the process of
designing performance efficient ambient crowds.

One problem with this technique however, is the computation of
internal animation trajectories for patches that satisfy both, time-
periodicity and boundary conditions amongst patches. Satisfying
both of these constraints is difficult, since it is equivalent to com-
puting collision-free trajectories that exactly pass through spatio-
temporal waypoints (i.e., at some exact position in time) whilst
at the same time solving possibly complex interactions between
agents (collision-avoidance). In addition to that, trajectories should
look as natural as possible.

In this paper a new optimization-based method to compute internal
trajectories for patches is proposed. This method starts by initially
assigning linear space-time trajectories which are easy to compute
and satisfy both, periodicity and boundary conditions, but at the
same time might introduce collisions between characters. Trajec-
tories are then iteratively optimized to handle collisions. This opti-
mization procedure aims in generating trajectories that are as close
as possible to the initial trajectories minimizing the number of col-
lision avoidance maneuvers as much as possible.

Concluding, the main contribution of this work is an optimization-
based algorithm to compute high quality navigation trajectories for

individual crowd patches under constraints expressed as sets of
spatio-temporal boundary control points .

The remainder of this paper is organized as follows: Section 2
presents a short overview on related work, Section 3 details the pro-
posed technique for trajectory generation, in Section 4 some results
are presented, together with their performance and quality analysis
followed by brief discussion and concluding remarks (Sections 5
and 6 respectively).

2 State of the Art

Most often, virtual environments are populated based on crowd
simulation approaches [Reynolds 1987; Reynolds 1999; Thalmann
and Raupp Muse 2013]. An ambient crowd is generated from a
large set of moving characters, mainly walking ones. Recent efforts
in crowd simulation have enabled dealing with improving computa-
tional performance [Pettré et al. 2006; Treuille et al. 2006], dealing
with high densities [Narain et al. 2009] or controllable crowds [Guy
et al. 2009]. There has also been a lot of effort to develop velocity-
based approaches [Paris et al. 2007; van den Berg et al. 2007] which
display much smoother and realistic locomotion trajectories, espe-
cially thanks to anticipatory adaptation to avoid collisions between
characters.

Simulation-based techniques seem ideal for creating an ambient
crowd for large environments but several problems are recurrent
with such approaches: a) crowd simulation is computationally de-
manding, crowd size is severely limited for interactive applications
on light computers; b) simulation is based on simplistic behaviours
(e.g., walking, avoiding collisions, etc.) and therefore it is difficult
to generate diverse and rich crowds based on classical approaches;
c) crowd simulation is prone to animation artifacts or deadlock sit-
uations and it is thus impossible to guarantee animation quality.

Example-based approaches attempt to solve the limitations on ani-
mation quality. The key idea of this approaches is to indirectly de-
fine the crowd behavior rules from existing crowd data (such as tra-
jectories from real people) [Lerner et al. 2007; Ju et al. 2010; Char-
alambous and Chrysanthou 2014]. Locally, trajectories are typi-
cally of good quality, because they reproduce real recorded ones.
However, such approaches raise other difficulties: it is difficult to
guarantee that the example database will cover all the required con-
tent and it can also be difficult to control behaviors and interactions
displayed by characters if the database content is not carefully se-
lected. Finally, those approaches are most of the time computa-
tionally demanding; even more so than traditional simulation based
techniques. Some researchers, such as Boatright et al. [Boatright
et al. 2014] seek to find a middle ground between example and sim-
ulation based methods aiming for both the better quality provided
by data-driven methods at speeds comparable to simulation meth-
ods.

An alternative to solve both performance and quality issues,
are methods that interconnect pre-computed patches of anima-
tions [Yersin et al. 2009; Kim et al. 2012; Jordao et al. 2014] to
generate larger ambient crowd animations. Crowd patches [Yersin
et al. 2009] more specifically are a kind of 3D animated texture el-
ements, which record the trajectories of several moving characters.
Trajectories are periodic in time so that the crowd motion can be
played endlessly. Trajectories’ boundary conditions at the geomet-
rical limits of patches are spatio-temporally controlled to allow con-
necting together two different patches with characters moving from
one patch to another. Thus, a crowd animated from a set of patches
have seamless motion and patches’ limits cannot easily be detected.
The boundary conditions are all registered into patterns, which are
sort of gates for patches with a set of spacetime input/output points.

Nevertheless, using the crowd patches approach, a limited set of
patterns should be used to be able to connect various patches to-
gether. As a result, it is important to be able to compose a patch by
starting from a set of patterns, and then deducing internal trajecto-
ries of patches from the set of boundary conditions defined by the
patterns. As a result, we need to compute trajectories for charac-
ters that pass through a given set of spatio-temporal waypoints; i.e.,
characters should reach specific points in space at specific moments
in time. This problem is difficult since generally speaking steering
techniques for characters consider 2D spatial goals, but do not con-
sider the exact time a character must take to reach its waypoint.
Therefore, dedicated techniques are required.

Yersin et al. suggest using an adapted Social Forces [Helbing et al.
2005] technique to compute internal trajectories. The key idea is
to connect input/output points together with linear trajectories and
model characters as particles attracted by a goal moving along one
of these linear trajectories, combined with repulsion forces to avoid
collision between them and static obstacles. One problem with this
approach is limited density level, as well as the level of quality
of trajectories that suffer from the usual drawbacks of the Social
Forces approach such as lack of anticipation, which results into un-
natural looking local avoidance maneuvers (Figure 7).

Compared to previous techniques we suggest formulating the prob-
lem of computing internal trajectories as an optimization problem.
First, we suggest optimizing the way spatio-temporal input and out-
put points are connected. Especially, since waypoints are defined in
space and time, we connect them aiming for comfortable walking
speeds (i.e., close to the average human walking speed). Indeed,
characters moving too slow or too fast are visually evident artifacts.
Secondly, after having connected waypoints with linear trajectories,
we deform them to remove any collisions by employing an iterative
approach. This approach aims at minimizing the changes to the
initial trajectories. We demonstrate improvements in the quality of
results as compared to the original work by Yersin et al. (Section 4).

Figure 2: Patches and Patterns A patch is defined by the geomet-
rical area A where a set of dynamic and static objects (D and S
respectively) can move over a period of time π. Patterns define
boundary conditions for the patches and act as portals connecting
neighboring patches.

3 Methodology

In this section we present our methodology for generating spatio-
temporally constrained trajectories for crowd patches. We start by
giving some definitions and notations (Section 3.1), followed by an
overview of the method (Section 3.2) and the three main steps of the
algorithm; control point matching, collision handling and trajectory

smoothing (Sections 3.3–3.5).

3.1 Definitions

Some definitions and notations regarding Crowd Patches are pre-
sented required for the proper understanding of the proposed algo-
rithms. Please refer to Figure 2 for a visual representation of the
definitions and to [Yersin et al. 2009] for a more detailed descrip-
tion of the concepts.

A patch is a set {A, π,D,S} where A ⊂ R2 is a geometrical area
with a convex polygonal shape, π the period of time of the anima-
tion and D and S are the sets of dynamic and static objects, respec-
tively. These last two sets may be empty in the case of an empty
patch. Static objects are simple obstacles whose geometry is fully
contained inside the patch, whereas dynamic objects are animated;
i.e., they are moving in time according to a set of trajectories T .

3.1.1 Trajectories

A trajectory inside a patch is defined as a function τ(t) going from
time to position, more specifically from a subset of [0, π] to A:

τ : [t1, t2]→ A, 0 ≤ t1 < t2 ≤ π (1)

We represent a trajectory as a list of control points connected by
segments:

• A control point is a point in space and time cp = {pcp, tcp}.
All control points in a trajectory can either be boundary or
movable ones. Boundary control points serve as entry and exit
points to the patch and cannot be moved, added or deleted.
Movable control points on the other hand can be moved,
added, or removed from the trajectory as long as they do not
violate the constraints of the patch; i.e., their positions must
lie inside area A (pcp ∈ A) and their time tcp must be be-
tween t1 and t2.

• A segment is a straight line connecting two control points in
a specific order. Since these are unidirectional lines in space-
time, it is important to remember that they are not allowed to
go backwards in time.

There are two categories of dynamic objects: endogenous and ex-
ogenous agents. Endogenous agents remain inside A for the total
period π of the patch. In order to achieve periodicity for the anima-
tion, they are associated with a trajectory τ : [0, π]→ A, such that
it respects the periodicity condition: the position at the start and at
the end of the animation must be the same, i.e. τ(0) = τ(π).

Exogenous agents on the other hand go outside A. They enter the
patch at time tinitial and position pinitial, and they exit at time
tfinal and position pfinal. For each agent we associate a sequence
of n ≥ 1 trajectories {τ1, τ2, . . . , τn}. Sequences may have only
one trajectory, but some agents require additional trajectories in or-
der to satisfy speed and time constraints. The following conditions
must be respected in each sequence of trajectories associated with
an exogenous agent:

1. pinitial and pfinal must be points on the borders of A other-
wise they cannot be exogenous agents.

2. If the sequence is composed by more than one trajectories,
the ending position of one trajectory should be the same as
the starting position of the next one to ensure continuity1:
τi(tπ) = τi+1(t0), ∀i < n.

1Please refer to [Yersin et al. 2009] for more details.

Note that the second condition implies that in sequences with mul-
tiple trajectories, each middle trajectory must be fully defined in the
period of time [0, π], while τ1 must be defined in [tinitial, π] and
τn must be defined in [0, tfinal].

3.1.2 Patterns

A patch can be considered as a spatio-temporal right prism depend-
ing on the type of polygon used for its area A (cube in the case
of a square patch). A pattern can be defined as one lateral face
of the prism (Figure 2). Specifically, it is a rectangle whose base
is one of the edges of the polygonal area (we define l ∈ R2 as
this two dimensional vector), and its height is equal to the period
π. In addition to these, patterns also include the sets I and O of
Input and Output boundary control points respectively. The input
set contains the boundary control points where exogenous agents
begin their trajectories; called the Entry Points. Conversely the out-
put control points are called Exit Points; they establish the position
in time and space that the exogenous agents finish their paths. For-
mally defined, a pattern P(i) is:

P(i) = {l(i), π(i), I(i),O(i)} (2)

To populate virtual environments, patches are concatenated to-
gether. Thus, continuity between trajectories should be enforced
for exogenous agents passing through two contiguous patches. This
means that two adjacent patches must have a similar pattern on the
side they share; i.e., the vector l and period π must be the same and
the input and output sets must be exchanged. More formally, having
two patterns P(1) and P(2) where P(1) = {l(1), π(1), I(1),O(1)}
and P(2) = {l(2), π(2), I(2),O(2)}, then, in order to satisfy C0

continuity the following must apply:

l(1) = l(2), π(1) = π(2), I(1) = O(2), I(2) = O(1) (3)

Under these conditions, P(1) is the mirror pattern of P(2) and vice
versa. When these patches are animated, agents will be moving
from one patch to its adjacent ones. If the area A of a patch is
a square then four patterns are defined, one per side. Importantly,
patterns defined by a patch have the property that the sum of the
cardinality of all the inputs is the same as the sum of the cardinality
of all outputs; we call this the parity condition of the patch:

∑
i∈patch

|I(i)| =
∑
i∈patch

|O(i)|

A patch defines a set of patterns, and conversely, a set of patterns
that satisfies the parity condition (i.e. all patterns in the set have
same period and whose vectors define a convex polygonal area) can
be used to create a patch indirectly.

3.2 Overview

The objective of the proposed work is to generate patches given a
set of patterns (one for each side of the patch). This implies that
given a set of constraints such as input and output spatio-temporal
control points, a set of believable collision-free trajectories that in-
terconnect all of them should be generated. This process has three
main steps (Figure 3):

1. Match the elements in the Input and Output sets contained
within a patch – Entry and exit points are connected based on a
score function that tries to keep agents close to their preferred
speed while at the same time avoiding connections to similar

Figure 3: Overview Input and output points in a patch’s patterns are initially connected and subsequently modified using the proposed
optimization approach and smoothed out to be collision free.

patterns, thus reducing unwanted u-turns. The input for this
step is a set of patterns and the output is a set of piecewise
linear trajectories connecting the entry and exit points.

2. Create collision free trajectories for these pairings – Starting
from simple line trajectories; successive bending is applied by
iterative subdivisions until they are collision free. Points lying
at the borders, i.e. entry and exit points, are hard constraints
and can never be moved.

3. Smooth out trajectories (if needed) – Splines are used as
a final step to minimize the hard turns ensuring that the
smoothed-out trajectories stay as close as possible to the orig-
inal ones from Step 2 to avoid introducing new collisions.

A more detailed look on all three steps follows in the remainder of
this section.

3.3 Connecting Boundary Control Points

The first step to the proposed algorithm is matching all entry and
exit points in an optimal way. To do this, a measure of the match’s
quality has to be defined. Intuitively, there are some matches that
are better than others; e.g., judging by observation, trajectories
passing near the center of the patch look better than the ones stay-
ing close to the borders. Some other aspects can also be considered,
such as how close the speed needed by an agent to travel from an
entry to an exit point is compared to typical walking comfort speeds
of humans. A comfort speed of ucft = 1.33m/s, which is the nor-
mal walking speed of humans in an unconstrained environment is
used in this work [Whittle 2003].

For a square patch, an order of preference between matching pat-
terns is defined; matching points between opposing patterns are pre-
ferred, followed by neighboring ones and finally with points that lie
on the same pattern. For any of these cases, if there exist multi-
ple possible matching options on the same pattern, the point whose
associated trajectory is closest to the ucft is selected.

To solve this matching problem, the Gale-Shapley algorithm [Gale
and Shapley 1962] (see Algorithm 1), commonly referred to as the
algorithm to solve the stable marriage problem is employed. This
algorithm assures that at the end, if we have Alice engaged to Bob
and Carol engaged to Dave, it is not possible for Alice to prefer
Dave and Dave to prefer Alice – this is called a stable match. Al-
gorithm 1 demonstrates the Gale-Shapley algorithm in relation to
two equal lists of entry and exit points who are being matched for
pairing.

In order to apply Algorithm 1, preference values for all pairs of

Initialize all i ∈ I and o ∈ O to free ;
while ∃ free entry point i who still has an exit point o to propose to
do

o← i′s highest ranked exit point to whom it has not yet
proposed ;
if o is free then

(i, o) become paired ;
else

some pair (i′, o) already exists ;
if o prefers i to i′ then

(i, o) become paired ;
i′ becomes free ;

else
(i′, o) remain paired;

end
end

end
Algorithm 1: Gale-Shapley Stable Marriage Algorithm from [Gus-
field and Irving 1989].

entry and exit points should be defined. To do so, all entry and exit
points keep a proposal list Ls indicating the order of preference for
their matching (Table 1). The following approach is employed to
rank each possible match-up:

1. Find the speed it would take to travel from an entry point to all
exit points. Assuming that (p1, t1) and (p2, t2) are the posi-
tion and time of the entry and exit points respectively, speed is
defined as u = s/∆t where s = |p2 −p1| and ∆t = t2 − t1
when t2 > t1, otherwise ∆t = π + t2 − t1. 2

2. Next, each pair of points is assigned a preference value:

prscore = umatch + p (4)

where umatch = arctan(|ucft − u|) ∈ [0, π/2) indicates
closeness to desired speed with 0 indicating maximum close-
ness. p = {0, 2, 4} defines a penalty value that depends on
where the two points lie relative to each other; for points on
opposing patterns there is no penalty, for neighboring patches
it is 2 and for points on the same pattern it is 4.3

3. Sort Ls in ascending order; the first entry indicates the most
desired exit point.

2More details on why this this last assumption is made will be presented
later during the creation of the initial set of trajectories.

3This can be generalized to any prism-like patch

Table 1: Proposal List Each entry point keeps a list of preference
scores for all possible exit points. Smaller values indicate higher
preference, with exit point B in this case being the most preferred
one. Exit Points F and D lie in the same pattern as Entry Point 1,
so they receive a larger score.

Entry Point: 1

Exit Point Preference
B 0.34
C 1.3
A 2.3
E 2.4
D 4.5
F 4.6

It should be emphasized here, that all control points (both entry
and exit) keep their own proposal lists. After each entry point has
been assigned a proposal list, Algorithm 1 is used to define matches
between the entry and exit points; every two points that remain en-
gaged at the end of the algorithm become a pair.

The final step is creating the initial batch of trajectories. Firstly,
the paired points are connected via straight lines; if a line tries to
connect two points backwards in time (that is if t2 < t1), the initial
trajectory is split into two parts – from t1 to π and from 0 to t2 as in
[Yersin et al. 2009]. The positions of these new control points are
in the same straight line, taken in such a way that the speed is the
same in both segments. The same approach is used if the trajectory
enforces unrealistically high speed values.

Further adjustments to the initial trajectories are done for some spe-
cial cases. For agents traveling only over an edge, a control point
is added near the center of the patch. For agents moving slowly, a
control point with the same position but on a different time is added,
resulting in agents that stop suddenly (as if pausing to look around)
but later on continuing their journey at a better speed.

This step results in linear trajectories that are optimized for speed
and coverage of space using an objective function (Equation 4).
These trajectories though can be colliding with each other, since no
special care has been taken up to this point to handle that. To ad-
dress this issue, the iterative technique, described in the next para-
graphs has been proposed.

3.4 Removing Collisions

The set of linear trajectories generated by Algorithm 1 will most
likely have collisions with the obstacles or other trajectories. As
collisions rarely take place in real-life human crowds, a strategy to
remove them from the initial trajectories should be defined. For
this, we propose an algorithm that manipulates the linear trajecto-
ries by moving control points. Since patches are concatenated to-
gether to create larger crowds, care must be taken during trajectory
modification so that the spatio-temporal boundary control points
(i.e., entry and exit ones) are not modified; other control points can
be added and manipulated.

Algorithm for collision handling An iterative algorithm for han-
dling collisions is proposed (Algorithm 2). The main idea is the
following: given a matrix M that stores the current minimum
distances in-between all trajectories, the algorithm iterates mod-
ifying the trajectories (and therefore its closest values M) until
min(M) > α, where α represents a minimum allowed distance
value. Given typical circular agents of radius r, α = 2r (therefore
min(M) > α ⇔ patch is collision free). To do so, new control
points are added during iterations (i.e., trajectories are split into seg-

Compute minimum distance matrix M ;
while there exists at least one entry in M below the threshold do

Find indices i and j for which M(i, j) has the smallest value
d;
Create temporary control points cpi and cpj in τi and τj that
are at distance d ;
Apply repulsion forces to cpi and cpj ;
Update τi and τj ;
Update M ;

end
Algorithm 2: The control points generation algorithm

ments) that are moved under some constraints until the trajectories
are collision free (see Figure 4 for an example).

First, the minimum distance matrix is calculated (Section 3.4.1). As
long as collisions exist, trajectories τi and τj having the minimum
value are found – that minimum value corresponds to a moment in
time and two points: pi and pj . These two points are moved to
handle the collision using correction forces Fi an Fj :

Fi = R(φ) ∗ ˆ∆pi,j ∗ α ∗ wi (5)

ˆ∆pi,j is the normalized vector connecting the two points (∆pi,j =
pi−pj)), α = ri+rj is the sum of the two agents’ radii and defines
a threshold value for minimum distance4, R(φ) is a small random
noise rotation matrix to help prevent infinite loops (φ : −0.5 ≤
φ ≤ 0.5 rad), and finally wi is a weight to reduce speed artifacts
and prevent agents from leaving the bounds of the patch:

wi =

{
uj/(ui + uj) if point stays in patch
0 otherwise (6)

ui and uj are the speeds of trajectories τi and τj .

Having the correction force Fi, point pi is displaced using the fol-
lowing equation:

pnewi = pi + Fi (7)

Once pnewi is found, a check to find if there is an existing control
point within a small time interval is performed; if successful, then
that point is moved to pnewi , otherwise a new control point is added
at pnewi . Finally, columns i, j and rows i, j of the distance matrix
M are updated with new distances. Calculations for force Fj and
point pj are symmetric.

We have found that in most situations this algorithm has fast con-
vergence rate and produces collision free trajectories (Section 4).
However there are still situations where it converges slowly or even
gets stuck in an infinite loop; and therefore a maximum number of
iterations is set.

3.4.1 Distance Matrix Calculation

Distance Matrix The first step of the collision handling algorithm
is generating a distance matrix M ∈ Rnxn between all the n tra-
jectories; i.e., the value atM(i, j) represents the minimum distance
between trajectories τi and τj (Table 2).

The following properties apply for all i, j ∈ [1, n] and can be em-
ployed to reduce computation time:

4In our implementation r1 = r2 = r, making the threshold constant.

(a) (b) (c)

Figure 4: Collision Handling (a) The “worst” collision is currently identified to be the one between the yellow and pink trajectories at
timestep t2 (b) The two trajectories are deformed to handle the collision (c) Overlayed difference between the two trajectories.

• M(i, i) = 0

• M(i, j) = M(j, i), i.e., the matrix is symmetric

• M(i, j) = ∞, ∀(τi, τj) that are never present at the same
time

Minimum Distance The minimum distance between two trajecto-
ries is defined as their minimum spatio-temporal distance; i.e. at
the point in time where they are closest to each other. Recall that
a trajectory can consist of one or more segments separated by con-
trol points (Section 3.1) and therefore the minimum has to be found
in-between all the trajectory’s segments.

Given any two linear trajectory segments s(1) and s(2), their mini-
mum distance can be found with an analytic approach. First, their
common time interval is found; i.e., the period of time that the tra-
jectories coexist in the patch. If the two segments do not have any
common time interval, then their distance is set to infinity (prac-
tically a large value). If there exists a common interval [ts, te],
then we set p

(1)
s and p

(2)
s as the two segments position at time

ts. Additionally, agents moving on these two segments have a
velocity of v(1) and v(2) respectively. So, for any point in time
t : 0 ≤ t ≤ te − ts, their distance is:

d(t) = ||(p(1)
s + v(1) ∗ t)− (p(2)

s + v(2) ∗ t)|| (8)

Setting w = p
(1)
s − p

(2)
s and ∆v = v(1) − v(2) Equation 8 be-

comes:

d(t) = ||w + ∆v ∗ t|| (9)

To find the minimum distance, we set the derivative d′(t) = 0 and
solve for t to get the time of closest approach:

tc = (−w · dv)/||dv||2 (10)

If 0 ≤ tc ≤ te − ts, then by setting t = tc in Equation 8 the
minimum distance between segments s(1) and s(2) is found. If tc
is outside the bounds of the segment we check the endpoints of
the line segment for collision. By having the minimum distances
between all the segments of the two trajectories, it is trivial to find
the minimum distance (see Table 2 for an example).

Table 2: Distance Matrix. Minimum distances between 4 trajec-
tories (τ0 − τ3) are updated whilst modifying the trajectories. At
this iteration of the algorithm, the minimum distance was between
trajectories τ1 and τ2 and therefore they will be modified for the
next step.

τ0 τ1 τ2 τ3

τ0 0 ∞ 8.31 2.10
τ1 ∞ 0 0.14 7.60
τ2 8.31 0.14 0 ∞
τ3 2.10 7.60 ∞ 0

3.5 Smoothing

Handling collisions by control points manipulation results in trajec-
tories with sharp changes in direction. Cubic spline interpolation is
proposed to smooth out the generated trajectories without introduc-
ing any new collisions; i.e., the smoothed out trajectory is as close
as possible to the original sharp one (Figure 5). For each one of
the trajectory’s segments, the spline’s coefficients need to be found
under C1 continuity restrictions:

1. Every spline associated with a trajectory between two consec-
utive control points cpi = (pi, ti) and cpi+1 = (pi+1, ti+1)
must pass through those same points; i.e., S(ti) = pi and
S(tt+1) = pi+1.

2. The speed at the control point pj that connects two consecu-
tive splines Sj−1 and Sj must be equal; i.e.,

∂

∂t
Sj−1(tj) =

∂

∂t
Sj(tj) (11)

These restrictions can be accommodated in such a way that they
form a system of linear equations that can be solved using Cholesky
decomposition. This method cannot directly be applied to the the
current control points, since typically these points are few and the
resulting splines are very different to the originally estimated linear
trajectories and therefore new collisions are introduced. To handle
this, the trajectory is uniformly sampled to generate tacks, i.e., new
virtual control points. These tacks enforce the splines to be flatter
and closer to the original linear trajectories (Figure 5).

Splines are now calculated based on the tacks. Instead of storing
the splines, these are again sampled based on curvature to get new

Figure 5: Smoothing Process (top row) Linear segments are sam-
pled to generate tacks that are used to create cubic splines. (bottom
row) These splines are then sampled depending on their curvature
to generate a new set of linear segments.

control points that define a new set of linear segments; the higher
the curvature the finer the sampling (bottom left of Figure 5).

There may be cases that even using a large number of tacks the
splines will differ significantly from the original ones. Threshold
value α as was defined in Section 3.4 is used to restrict on the max-
imum allowed displacement of splines. If a new control point sur-
passes this threshold, it is simply discarded. There may be extreme
cases (for example, due to bad sampling of the tacks at the begin-
ning), where the spline has extreme curves that are very different
from the initial trajectory. In these extreme cases, most of the new
control points would then not be added and the smoothed trajectory
would end up being very similar to the original one.

Splines are a relative cheap approach with nice smoothing of trajec-
tories, but other techniques are currently being considered so that
the generated trajectories are more close to real-life ones.

4 Results

The proposed trajectory generation algorithm was integrated into
our own crowd patches platform in C++. Each of the experiments
described in the following paragraphs were for patches of size A =
16m ∗ 16m and period π = 10sec.

Performance: All the performance measurements presented in this
section were run on a single thread of an Intel Xeon quad core
2.8 GHz processor having 8GB of RAM (Figure 6). Each exper-
iment consisted of placing equal numbers of entry/exit points in
random positions in time around the borders of the patches. For
each possible number of entry/exit points (ranging from 1 − 50)
the experiment was run multiple times (20) resulting in 1000 dif-
ferent patches. For each one of the experiments, time and number
of iterations required for convergence were measured. The results
indicate a direct correlation of the number of iterations to the time
required for convergence. More importantly, increasing the number
of control points decreases performance exponentially due to the
increased density.

Additionally, some of the experiments having more than a total of
30 pairs of entry-exit control points (0.6% of the experiments) had
very slow convergence rates and were forced to stop at 2000 it-
erations resulting in some collisions in the patch. Examining the
patches that failed to converge we observed that this was mainly
due to the placement of the initial boundary control points; if these

(a) [Yersin et al. 2009] (b) Iterative

Figure 7: Collision Anticipation (a) Using the approach described
in [Yersin et al. 2009] trajectories lack anticipation as they sud-
denly curve when collisions are near whereas (b) the proposed
method generates trajectories with higher anticipation resulting in
gradually changing direction.

points are placed too close together then it may be impossible to
resolve collisions while staying within the patch and maintaining
realistic speed. This can also be due to the fact that the proposed ap-
proach resolves local minima at each step using a greedy approach.

Collision Anticipation: In the original work [Yersin et al. 2009]
Helbing’s social forces [Helbing et al. 2005] approach was used to
handle collisions. One problem with that approach is the lack of
anticipation by agents; they handle collisions late resulting in un-
natural looking trajectories even for simple scenarios such as the
one in Figure 7 whereas the proposed approach emulates better an-
ticipatory behaviour.

Example visualization: The proposed method manages to create
trajectories that are both free of collisions and with smooth motion;
i.e., agents following these trajectories have speeds near regular hu-
man comfort speeds and are also visually pleasing. Figure 8 shows
the trajectories generated by the proposed method for a patch con-
sisting of 10 input and 10 output points and the intermediate steps:
first input and output points are matched and connected with linear
trajectories using Algorithm 1, then collisions are handled using Al-
gorithm 2 and finally the generated trajectories are smoothed out.

Adaptability to control point placement: This method is able to
adjust to the placement of the control points (Figure 9) aiming at
the same time for good space coverage over the period of the patch.

Adaptability to density: The proposed method can adapt to dif-
ferent numbers of initial control points; i.e., it manages to generate
smooth collision free trajectories for large numbers of trajectories
(Figure 10). Increasing the number of control points increases den-
sity and the time required for calculating these trajectories but recall
that crowd patches can be precomputed and therefore during simu-
lation time large numbers of moving agents can be animated with
small cost (compared to real-time simulations for example). Ad-
ditionally, the proposed method aims in covering the entire patch’s
space over a period of time; we emphasize here that density control
is difficult using other real-time simulation techniques.

5 Discussion

Convergence: The convergence of this algorithm, depends mostly
on the number of agents required in the virtual scene; large numbers
of agents lead to long convergence time as well as the possibility
that the algorithm will not converge and the patch generation will
fail. Convergence failure can occur if at least two boundary control

CONVERGENCE
IT

ER
A

TI
O

N
S

NUMBER OF I/O POINTS

2250

2000

1750

1500

1250

1000

750

500

250

0 10 20 30 40 50

(a)

PERFORMANCE

NUMBER OF I/O POINTS

400

0 10 20 30 40 50

350

300

250

200

150

100

50

TI
M

E
(s

ec
s)

0

(b)

Figure 6: Performance A dot on each graph represents a simulated patch. (a) The number of iterations for the proposed algorithm to
converge is exponential to the number of initial control points – some of the experiments failed to converge. (b) Time is directly correlated to
the number of iterations.

(a) Input (b) Connected (c) Collision Free (d) Smoothed Out

Figure 8: Method example The proposed method starts from (a) a set of control points in the boundaries of an empty patch, (b) interconnects
them in an optimal way, (c) resolves any temporal collisions and finally (d) smooths the trajectories.

points are closer to the minimum allowed threshold α (Section 3.4)
at the same exact moment in time; this is by definition a conver-
gence failure since boundary control points cannot be moved. If on
the other hand, the boundary control points differ slightly in time,
the algorithm will converge but with a high probability of generat-
ing agents with unrealistic speeds.

Furthermore, two control points near the corners may have a re-
pulsion force that pushes one of them outside the patch’s bound-
aries. For these cases, two approaches can be taken; either ignore
these two points and move on or let one of the two points leave the
boundaries of the patch. In the current implementation the latter
was employed due to its simplicity.

This leads to one important conclusion; given bad input (i.e., pat-
terns and their boundary control points) the algorithm will behave
badly resulting into bad trajectories. Therefore, we are currently
looking into approaches of generating patches that will guarantee
well behaved trajectories (defining well behaved trajectories is also
an interesting problem).

Temporal modifications of control points: In this paper, mostly
spatial corrections to the trajectories of the agents are employed.
For some scenarios, moving control points in space might not be the

best approach, since this could result in either agents moving with
unnatural speed and acceleration or into trajectories leaving the area
of the patch (as described in the previous paragraphs). Collisions
can be avoided if temporal displacement is applied to control points
without any spatial modification which in essence accelerate (or
decelerate) agents. Obviously, this could resolve spatial issues such
as out of boundary cases but care should be taken so that agents’
velocities remain realistic.

Obstacles: A patch can have static objects; i.e., obstacles. Having
a small number of obstacles is equivalent to defining a set of spe-
cial agents that are not allowed to move. Obviously, placement of
these obstacles plays a significant role on the trajectory generation
since boundary control points could be “trapped” or if a trajectory
passes closely between two static obstacles it would end up in a po-
sition where the collision avoidance algorithm would not converge
since a control point could end up oscillating between the obsta-
cles. One possible solution to that is grouping obstacles together as
bigger ones with a cost on the free area that can be used by other
trajectories. Approaches to handle dense obstacles are currently be-
ing considered as alternatives to this approach and on the design of
crowd patches. Obstacle handling is still under development and
not implemented in the current version of the algorithm.

(a) (b) (c) (d)

Figure 9: Variance We demonstrate different results for the same number of initial spatio-temporal control points but different placement.
All the examples here consist of 10 entry and 10 exit control points.

(a) 10 Entry/Exit Points (b) 20 Entry/Exit Points (c) 30 Entry/Exit Points (d) 40 Entry/Exit Points

Figure 10: Density Adaptability The proposed method can generate collision free trajectories for many situations; from sparse to very dense.

Evaluating the quality of motion: One of the largest issues in
crowd simulation research is evaluating the quality of generated be-
haviour. Currently, this is done by visual inspection which is a very
biased approach. Several methods have been proposed to evaluate
the quality of crowd motion in a quantitative approach that we plan
on investigating as future work. For example Singh et al. [Singh
et al. 2009] propose to evaluate quality based on the capability of
a crowd simulation algorithm of accomplishing simple scenarios.
Lerner et al. [Lerner et al. 2010] and Guy et al. [Guy et al. 2012]
take alternative approaches where the quality of a crowd simulator
is compared to real-world data.

6 Conclusions

A novel optimization based technique for generating trajectories
for crowd patches has been presented; given an empty patch and
a set of spatio-temporal control points on the edges of the patch
that define entry and exit points for characters, a set of smooth col-
lision free trajectories is generated. Patches can then be combined
to efficiently represent an ambient crowd since most of the calcula-
tions are done at pre-processing; no collision handling is performed
at run-time. Therefore, even though generating patches for dense
patches using the proposed technique is expensive, run-time perfor-
mance is not affected.

Even though the algorithm produces collision free trajectories, there
are some limitations. Some times trajectories that are generated en-
force unrealistic speeds (much different than the comfort speed of
humans) or abnormal looking behaviour can emerge such as sud-
den turns. Additionally, the proposed algorithm is a greedy one
since at each step local optimization is performed (i.e., we look at

the agent with higher collision score) and therefore a globally op-
timal solution might not be achieved. As future work, we plan on
expanding this method using a global optimization approach that
takes into account various plans of action and takes into account
speed. Data from real-world crowds can also be used during op-
timization so that the generated trajectories provide more real life
like behaviours. Evaluating the quality of the generated trajectories
is one of the most important issues we are investigating. Finally,
collision points are moved in space; an approach that moves trajec-
tories in space and time could potentially solve unrealistic looking
behaviours, remove motion artifacts and converge faster.

Acknowledgements

This work is funded by the French National Research Agency
ANR, project CHROME number ANR-12-CORD-0013. The au-
thors would like to thank Tristan Le-Bouffant and Julian Joseph for
their help on preparing the demonstrations.

References

BOATRIGHT, C. D., KAPADIA, M., SHAPIRA, J. M., AND
BADLER, N. I. 2014. Generating a multiplicity of policies for
agent steering in crowd simulation. Computer Animation and
Virtual Worlds.

CHARALAMBOUS, P., AND CHRYSANTHOU, Y. 2014. The PAG
Crowd: A Graph Based Approach for Efficient Data-Driven
Crowd Simulation. Computer Graphics Forum.

GALE, D., AND SHAPLEY, L. S. 1962. College admissions and the
stability of marriage. American Mathematical Monthly, 9–15.

GUSFIELD, D., AND IRVING, R. W. 1989. The Stable Marriage
Problem: Structure and Algorithms. MIT Press, Cambridge,
MA, USA.

GUY, S. J., CHHUGANI, J., KIM, C., SATISH, N., LIN, M.,
MANOCHA, D., AND DUBEY, P. 2009. Clearpath: Highly paral-
lel collision avoidance for multi-agent simulation. In Proc. of the
ACM SIGGRAPH/Eurographics Symp. on Computer Animation,
ACM, SCA ’09, 177–187.

GUY, S. J., VAN DEN BERG, J., LIU, W., LAU, R., LIN, M. C.,
AND MANOCHA, D. 2012. A statistical similarity measure for
aggregate crowd dynamics. ACM Trans. Graph. 31, 6 (Nov.),
190:1–190:11.

HELBING, D., BUZNA, L., JOHANSSON, A., AND WERNER, T.
2005. Self-organized pedestrian crowd dynamics: Experiments,
simulations, and design solutions. Transportation Science 39, 1
(February), 1–24.

JORDAO, K., PETTRÉ, J., CHRISTIE, M., AND CANI, M.-P. 2014.
Crowd sculpting: A space-time sculpting method for populating
virtual environments. In Computer Graphics Forum, vol. 33,
Wiley Online Library, 351–360.

JU, E., CHOI, M. G., PARK, M., LEE, J., LEE, K. H., AND
TAKAHASI, S. 2010. Morphable crowds. In Proc. of ACM
SIGGRAPH Asia, ACM, SIGGRAPH Asia ’10, 140:1–140:10.

KIM, M., HWANG, Y., HYUN, K., AND LEE, J. 2012.
Tiling motion patches. In Proceedings of the 11th ACM SIG-
GRAPH/Eurographics conference on Computer Animation, Eu-
rographics Association, 117–126.

LERNER, A., CHRYSANTHOU, Y., AND LISCHINSKI, D. 2007.
Crowds by example. Computer Graphics Forum 26, 3 (Septem-
ber), 655–664.

LERNER, A., CHRYSANTHOU, Y., SHAMIR, A., AND COHEN-
OR, D. 2010. Context-dependent crowd evaluation. Computer
Graphics Forum 29, 7, 2197–2206.

NARAIN, R., GOLAS, A., CURTIS, S., AND LIN, M. C. 2009.
Aggregate dynamics for dense crowd simulation. In Proc. of
ACM SIGGRAPH Asia, ACM, SIGGRAPH Asia ’09, 122:1 –
122:8.

PARIS, S., PETTRÉ, J., AND DONIKIAN, S. 2007. Pedestrian
reactive navigation for crowd simulation: a predictive approach.
Computer Graphics Forum 26, 3 (September), 665–674.

PETTRÉ, J., CIECHOMSKI, P., MAM, J., YERSIN, B., LAUMOND,
J.-P., AND THALMANN, D. 2006. Real-time navigating crowds:
Scalable simulation and rendering. Computer Animation adn
Virtual Worlds 17, 3–4, 445–455.

REYNOLDS, C. W. 1987. Flocks, herds, and schools: A distributed
behavioral model. Computer Graphics 21, 4, 24–34.

REYNOLDS, C. W. 1999. Steering behaviors for autonomous char-
acters. In Game Developers Conference, 763–782.

ROCKSTAR-GAMES, 2013. Grand theft auto v.
http://www.rockstargames.com/grandtheftauto/, September.

SINGH, S., KAPADIA, M., FALOUTSOS, P., AND REINMAN, G.
2009. Steerbench: a benchmark suite for evaluating steering be-
haviors. Computer Animation and Virtual Worlds 20, 5-6, 533–
548.

THALMANN, D., AND RAUPP MUSE, S. 2013. Crowd Simulation,
2nd ed. Springer.

TREUILLE, A., COOPER, S., AND POPOVIĆ, Z. 2006. Continuum
crowds. In Proc. of ACM SIGGRAPH 2006, ACM, SIGGRAPH
’06, 1160–1168.

VAN DEN BERG, J., LIN, M., AND MANOCHA, D. 2007. Recip-
rocal velocity obstacles for real-time multi-agent navigation. In
Proc. of the IEEE Int. Conf. on Robotics and Automation, IEEE,
ICRA ’07, 1928–1935.

WHITTLE, M. W. 2003. Gait analysis: an introduction.
Butterworth-Heinemann.

YERSIN, B., MAÏM, J., PETTRÉ, J., AND THALMANN, D. 2009.
Crowd patches: Populating large-scale virtual environments for
real-time applications. In Proceedings of the 2009 Symposium
on Interactive 3D Graphics and Games, ACM, New York, NY,
USA, I3D ’09, 207–214.

